Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T14:22:02.372Z Has data issue: false hasContentIssue false

Grape variety affects larval performance and also female reproductive performance of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae)

Published online by Cambridge University Press:  09 March 2007

J. Moreau
Affiliation:
Institut de Zoologie, Université de Neuchâtel, CH-2007 Neuchâtel, Switzerland
B. Benrey
Affiliation:
Institut de Zoologie, Université de Neuchâtel, CH-2007 Neuchâtel, Switzerland
D. Thiéry*
Affiliation:
UMR 1065 INRA-ENITAB en Santé Végétale, INRA, Institut Supérieur de la Vigne et du Vin, BP 81, F-33883 Villenave d'Ornon Cedex, France
*
*Fax: +33(0)557122621 E-mail: thiery@bordeaux.inra.fr

Abstract

For insect herbivores, the quality of the larval host plant is a key determinant of fitness. Therefore, insect populations are supposed to be positively correlated with the nutritional quality of their host plant. This study aimed to determine if and how different varieties of grapes (including the wild grape Lambrusque) affect both larval and adult performance of the polyphagous European grapevine moth Lobesia botrana (Denis & Schiffermüller). Significant differences were found in larval development time, but not in pupal mass, adult emergence rate, or sex ratio. Although the fecundity of females is not different among varieties, females fed on some varieties produced eggs of different sizes which are correlated to their fertility. Thus, females adapt resource allocation to eggs depending on their diet as larvae. Using a fitness index, the average reproductive output was found to be highest for females reared on cv. Chardonnay. Females reared on wild grape produced a fitness index identical to the cultivated grapes. However, Lambrusque and Gewurztraminer separate themselves from the cultivated varieties according to our discriminant analyses. It is emphasized, through this study, that cultivars fed on by larvae should be considered in the population dynamics of L. botrana and that egg number is insufficient to determine host plant quality.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, C. (1999) Ecologie de la vigne sauvage Vitis vinifera L. ss. sylvestris, dans les forêts alluviales et colluviales d'Europe. PhD thesis, University of Neuchâtel, Switzerland.Google Scholar
Awmack, C.S. & Leather, S.R. (2002) Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817844.CrossRefGoogle ScholarPubMed
Benrey, B. & Denno, R.F. (1997) The slow growth-high mortality hypothesis: a test using the cabbage butterfly. Ecology 78, 987999.Google Scholar
Benrey, B., Callejas, A., Rios, L., Oyama, K. & Denno, R.F. (1998) The effects of domestication of Brassica and Phaseolus on the interaction between phytophagous insects and parasitoids. Biological Control 11, 130140.Google Scholar
Berrigan, D. (1991) The allometry of egg size and number in insects. Oikos 60, 313321.CrossRefGoogle Scholar
Bovey, P. (1966) Super-famille des Tortricoidea. Entomologie appliquée à l'agriculture. pp. 456893 in Balachowsky, A.S. (Eds) Vol. 2 Lépidoptères, Paris, Masson et Cie.Google Scholar
Bulmer, M.G. (1983) Models for the evolution of protandry in insects. Journal of Theoretical Biology 35, 195206.Google Scholar
Chen, Y.H. & Welter, S.C. (2003) Confused by domestication: incongruent behavioural responses of the sunflower moth, Homoeosoma electellum (Lepidoptera: Pyralidae) and its parasitoid Dolichogenidea homoeosomae (Hymenoptera: Braconidae), towards wild and domesticated sunflowers. Biological Control 28, 180190.CrossRefGoogle Scholar
Dixon, A.F.G. (1987) Seasonal development in aphids. pp. 315320Harrewijn, P. & Minks, A. (Eds) Aphids: their biology, natural enemies and control. Amsterdam, Elsevier.Google Scholar
Eichhorn, K.W. & Lorenz, D.H. (1977) Phonologische Entwicklumggsstadien der Rebe. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 29, 119120.Google Scholar
Evans, L.T. (1993) Crop evolution, adaptation and yield, Cambridge, Cambridge University Press.Google Scholar
Fagerström, T. & Wiklund, C. (1982) Why do males emerge before females? Protandry as a mating strategy in male and female butterflies. Oecologia 52, 164166.Google Scholar
Fermaud, M. (1998) Cultivar susceptibility of grape berry clusters to larvae of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology 91, 974980.CrossRefGoogle Scholar
Fox, C.W. & Czesak, M.E. (2000) Evolutionary ecology of progeny size in arthropods. Annual Review of Entomology 45, 341369.CrossRefGoogle ScholarPubMed
Fox, C.W., Thakar, M.S. & Mousseau, T.A. (1997) Egg size plasticity in a seed beetle: an adaptative maternal effect. American Naturalist 149, 149163.CrossRefGoogle Scholar
Gabel, B. & Roehrich, R. (1995) Sensitivity of grapevine phenological stages to larvae of European grapevine moth Lobesia botrana Den. & Schiff. Journal of Applied Entomology 119, 127130.CrossRefGoogle Scholar
Heywood, V. & Zohary, D. (1995) A catalogue of the wild relatives of cultivated plants native to Europe. Flora Mediterranea 5, 375415.Google Scholar
Idris, A.B. & Grafius, E. (1996) Effects of wild and cultivated host plants on oviposition, survival, and development of diamondback moth (Lepidoptera: Plutellidae) and its parasitoid Diadegma insulare (Hymenoptera: Ichneumonidae). Environmental Entomology 25, 825833.CrossRefGoogle Scholar
Karlsson, B. & Wiklund, C. (1984) Egg weight variation and lack of correlation between egg weight and offspring fitness in the wall brown butterfly Lasiommata negra. Oikos 43, 376385.CrossRefGoogle Scholar
Karlsson, B. & Wiklund, C. (1985) Egg weight variation in relation to egg mortality and starvation endurance of newly hatched larvae in some satyrid butterflies. Ecological Entomology 10, 205211.CrossRefGoogle Scholar
Kaspi, R., Mossinson, S., Drezner, T., Kamensky, B. & Yuval, B. (2002) Effects of larval diet on development rates and reproductive maturation of male and female Mediterranean fruit flies. Physiological Entomology 27, 2938.CrossRefGoogle Scholar
Leather, S.R. (1995) The effect of temperature on oviposition, fecundity and egg hatch in the pine beauty moth, Panolis flammea (Lepidoptera: Noctuidae). Bulletin of Entomological Research 84, 515520.CrossRefGoogle Scholar
Leather, S.R. & Dixon, A.F.G. (1982) Secondary host preferences and reproductive activity of the bird cherry-oat aphid, Rhopalosiphum padi. Annals of Applied Biology 99, 115118.CrossRefGoogle Scholar
Lederhouse, R.C., Finke, M.D. & Scriber, J.M. (1982) The contributions of larval growth and pupal duration to protandry in the black swallowtaill butterfly, Papilio polyxenes. Oecologia 53, 296300.CrossRefGoogle ScholarPubMed
Legendre, P. & Legendre, L. (1988) Numerical ecology, developments in environmental modelling 2nd English editions Elsevier AmsterdamGoogle Scholar
Mackey, A.P. (1978) Growth and bioenergetics of the moth Cyclophragama leucosticta Grunberg. Oecologia 32, 367376.Google Scholar
Maher, N. & Thiéry, D. (2004) A bioassay to evaluate the activity of chemical stimuli from grape berries on the oviposition of Lobesia botrana (Lepidoptera: Tortricidae). Bulletin of Entomological Research 94, 2733.Google Scholar
Maher, N., Jolivet, M. & Thiéry, D. (2001) Oviposition preference of the European grape vine moth, Lobesia botrana (Lepidoptera: Tortricidae) for different vine cultivars: influence of chemical stimuli from the fruit surface. IOBC/wprs Bulletin 24 7 103108Google Scholar
Marchal, P. (1912) Mission d'étude de la Cochylis et de l'Eudemis pendant l'année 1911 Paris Librairie PolytechniqueGoogle Scholar
Mousseau, T.A. & Fox, C.W. (1998) Maternal effects as adaptations, Oxford, Oxford University Press.CrossRefGoogle Scholar
Mondy, N. & Corio-Costet, M.F. (2000) The response of the grape berry moth (Lobesia botrana) to a dietary phytopathogenic fungus (Botrytis cinerea): the significance of fungus sterols. Journal of Insect Physiology 46, 15571564.CrossRefGoogle ScholarPubMed
O'Brien, D., Fogel, M. & Boggs, C. (2002) Renewable and non-renewable resources: amino acid turnover and allocation to reproduction in Lepidoptera. Proceedings of the National Academy of Sciences USA 99, 44134418.Google Scholar
Ocete, R., Lopez, M.A., Lara, M. & Del, Tio R. (1997) Spanish wild grapevine populations: genetic resources and phytosanitary status. Plant Genetic Resources 110, 512.Google Scholar
Parry, D., Spence, J.R. & Volney, W.J.A. (1998) Budbreak phenology and natural enemies mediate survival of first-instar forest tent caterpillar (Lepidoptera: Lasiocampidae). Environmental Entomology 27, 13681374.Google Scholar
Ratte, H.T. (1985) Temperature and insect development pp. 3366Hoffmann, K.H. (Eds) Environmental physiology and biochemistry of insects. Berlin, Springer-Verlag.Google Scholar
Raven, C.P. (1961) Oogenesis the storage of developmental information. Oxford, Pergamon Press.Google Scholar
Rodriguez-del-Bosque, L.A., Smith, J.W. & Browning, H.W. (1989) Development and life-fertility tables for Diatraea lineolata (Lepidoptera: Pyralidae) at constant temperatures. Annals of the Entomological Society of America 82, 459469.Google Scholar
Roehrich, R. & Boller, E. (1991) Tortricids in vineyards. pp. 507514 in Van der Gesst, L.P.S. & Evenhuis, H.H. (Eds) Tortricid pests, their biology natural enemies and control. Amsterdam, Elsevier.Google Scholar
Savopoulou-Soultani, M. & Tzanakakis, M.E. (1988) Development of Lobesia botrana (Lepidoptera Tortricidae) on grapes and apples infected with the fungus Botrytis cinerea. Environmental Entomology 17, 16.Google Scholar
Scossiroli, R.E. (1988) Origine ed evoluzione della vitte. Atti, Istituto Botanico della Università Laboratorio Crittogamico 7, 3555.Google Scholar
Scriber, J.M., Slansky, F. Jr. (1981) The nutritional ecology of immature insects. Annual Review of Entomology 26, 183211.Google Scholar
Slansky, F. & Scriber, J.M. (1985) Food consumption and utilization. pp. 87163 in Kerkut, G.A. & Gilbert, L.I. (Eds) Comprehensive insect physiology, biochemistry and pharmacology. Oxford, Pergamon Press.Google Scholar
Slansky, F. & Rodriguez, J.G. (1987) Nutritional ecology of insects, mites, spiders, and related invertebrates: an overview. pp. 169Slansky, F. & Rodriguez, J.G. (Eds) Nutritional ecology of insects, mites, spiders, and related invertebrates. New YorkWiley.Google Scholar
Stellwaag, F. (1928) Die Weinbauinsekten der Kulturländer, Berlin, Paul Parey.Google Scholar
Thiéry, D. (2005) Vers de la grappe. Les connaître pour s'en protéger. Guide pratique, Vigne et vins. Int. Publication, Bordeaux France.Google Scholar
Thiéry, D. & Gabel, B. (2000) Comportement de ponte des femelles de l'eudémis de la vigne en présence d'extraits de fleur de “Muller Thurgau”. IOBC/wprs Bulletin 23 4 135138.Google Scholar
Thiéry, D. & Moreau, J. (2005) Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 143, 548557.Google Scholar
Torres-Vila, L.M., Stockel, J. & Roehrich, R. (1995) Le potentiel reproducteur et ses variable biotiques associées chez le mâle de l'Eudémis de la vigne Lobesia botrana. Entomologia Experimentalis et Applicata 77, 105119.Google Scholar
Torres-Vila, L.M. & Rodriguez-Molina, M.C. (2002) Egg size variation and its relationship with larval performance in the Lepidoptera: the case of the European grapevine moth Lobesia botrana. Oikos 99, 272283.Google Scholar
Van Emden, H.F. (1987) Cultural methods: the plant. pp. 2768Burn, A.J., Coaker, T.H. & Jepson, P.C. (Eds) Integrated pest management. London, Academic Press.Google Scholar
Wiklund, C. & Fagerström, T. (1977) Why do males emerge before females. Oecologia 31, 153158.CrossRefGoogle ScholarPubMed
Wiklund, C. & Persson, A. (1983) Fecundity, and the relation of egg weight variation to offspring fitness in the speckled wood butterfly Pararge aegeria, or why don't female butterflies lay more eggs. Oikos 40, 5363.Google Scholar
Wiklund, C., Nylin, S. & Forsberg, J. (1991) Sex-related variation in growth-rate as a result of selection for large size and protandry in a bivoltine butterfly, Pieris napi. Oikos 60, 241250.CrossRefGoogle Scholar
Wiklund, C., Kaitala, A., Lindfors, A. & Abenius, V. (1993) Polyandry and its effect on female reproduction in the green-veined white butterfly (Pieris, napi L.). Behavioural Ecology and Sociobiology 33, 2533.Google Scholar
Weseloh, R.M., Andreadis, T.G., Moore, R.E.B., Andersson, J.F., Dubois, N.R. & Lewis, F.B. (1983) Field confirmation of a mechanism causing synergism between Bacillus thuringiensis and the gypsy moth parasitoid, Apanteles melanoscelus. Journal of Invertebrate Pathology 41, 99103.CrossRefGoogle Scholar