Hostname: page-component-68945f75b7-z7ghp Total loading time: 0 Render date: 2024-08-06T06:17:20.190Z Has data issue: false hasContentIssue false

Inbreeding in the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae) estimated from endosulfan resistance phenotype frequencies

Published online by Cambridge University Press:  10 July 2009

D. Pierre Gingerich*
Affiliation:
Section of Ecology and Systematics, Cornell University, Ithaca, New York, USA
Philippe Borsa
Affiliation:
ORSTOM, Institut Fran¸ais de Recherche Scientifique pour le Développement en Coopération, Nouméa, New Caledonia
D. Maxwell Suckling
Affiliation:
Horticulture and Food Research Institute of New Zealand Ltd., Lincoln, Christchurch, New Zealand
Luc-Olivier Brun
Affiliation:
ORSTOM, Institut Fran¸ais de Recherche Scientifique pour le Développement en Coopération, Nouméa, New Caledonia
*
Section of Ecology and Systematics, Corson Hall, Cornell University, Ithaca, New York 14853, USA.

Abstract

An estimate of the inbreeding coefficient, FIS, of the coffee berry borer, Hypothenemus hampei Ferrari, was calculated from genotype frequencies of endosulfan resistance in beetles collected from berries in 41 different fields on the East Coast of New Caledonia. Two different estimates were obtained as a function of sampling date: FIS=0.491 ± 0.059 (s.e.) for samples collected in September, and FIS=0.215 ± 0.108 for samples collected in April. These values of FIS are very high in comparison to those of most insects, but surprisingly low given current understandings of H. hampei mating patterns. The difference between April and September FIS estimates is discussed in terms of insecticide regimes and seasonal variability of sib inbreeding levels. The high level of inbreeding in the coffee berry borer increases frequencies of homozygotes relative to heterozygotes. Inbreeding will accelerate resistance evolution whenever the fitness of homozygous resistant insects exceeds that of heterozygotes, and will undermine any high-dose strategy to control resistance evolution.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergamin, J. (1943) Contribução para o conhecimento da biologia da broca do café Hypothenemus hampei (Ferrari, 1867) (Col. Ipidae). Arquivos do Institute Biologico (São Paulo) 14, 3172.Google Scholar
Borsa, P. & Gingerich, D.P. (1995) Allozyme variation and an estimate of the inbreeding coefficient in the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of Entomological Research 85, 2128.CrossRefGoogle Scholar
Borsa, P. & Kjellberg, F. (1996) Experimental evidence for pseudo-arrhenotoky in the scolytid beetle, Hypothenemus hampei (Coleoptera: Scoytidae). Heredity 76, 130135.CrossRefGoogle Scholar
Brun, L.O. & Suckling, D.M. (1992) Field selection for endosulfan resistance in coffee berry borer (Coleoptera: Scolytidae) in New Caledonia. Journal of Economic Entomology 85, 325334.Google Scholar
Brun, L.O., Marcillaud, C., Gaudichon, V. & Suckling, D.M. (1989) Endosulfan resistance in Hypothenemus hampei (Coleoptera: Scolytidae) in New Caledonia. Journal of Economic Entomology 82, 13111316.Google Scholar
Brun, L.O., Marcillaud, C., Gaudichon, V. & Suckling, D.M. (1994) Cross resistance between insecticides in coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae) from New Caledonia. Bulletin of Entomological Research 84, 175178.CrossRefGoogle Scholar
Brun, L.O., Stuart, J., Gaudichon, V., Aronstein, K. & ffrench-Constant, R.H. (1995a) Functional haplodiploidy: A mechanism for the spread of insecticide resistance in an important international insect pest. Proceedings of the National Academy of Sciences, USA 92, 98619865.CrossRefGoogle Scholar
Brun, L.O., Suckling, D.M., Roush, R.T., Gaudichon, V., Preisler, H. & Robertson, J.L. (1995b) Genetics of endosulfan resistance in Hypothenemus hampei (Coleoptera: Scolytidae): implications for mode of sex determination. Journal of Economic Entomology 88, 470474.CrossRefGoogle Scholar
Caprio, M.A. & Tabashnik, B.E. (1992a) Allozymes used to estimate gene flow among populations of diamondback moth (Lepidoptera: Plutellidae) in Hawaii. Environmental Entomology 21, 808816.CrossRefGoogle Scholar
Caprio, M.A. & Tabashnik, B.E. (1992b) Gene flow accelerates local adaptation among finite populations: Simulating the evolution of insecticide resistance. Journal of Economic Entomology 85, 611620.Google Scholar
Coll, M., de Mendoza, L.G. & Roderick, G.K. (1994) Population structure of a predatory beetle: the importance of gene flow for intertrophic level interactions. Heredity 72, 228236.CrossRefGoogle ScholarPubMed
Corbett, G.H. (1933) Some preliminary observation on the coffee berry beetle borer, Stephanoderes (Cryphalus) hampei Ferr. Malayan Agricultural Journal 21, 822.Google Scholar
Crouau-Roy, B. (1988) Genetic structure of cave-dwelling beetle populations: significant deficiencies of heterozygotes. Heredity 60, 321327.CrossRefGoogle Scholar
Falconer, D.S. (1989) Introduction to quantitative genetics. 3rd edn.438 pp. Harlow, Essex, Longman Scientific and Technical.Google Scholar
ffrench-Constant, R.H., Steichen, J.C. & Brun, L.O. (1994) A molecular diagnostic for endosulfan insecticide resistance in the coffee berry borer Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of Entomological Research 84, 1116.CrossRefGoogle Scholar
Gingerich, D.P. (1996) Dynamics of insecticide resistance evolution in Hypothenemus hampei (Coleoptera, Scolytidae): Treatment regime and population structure. M.S. thesis, Cornell University.Google Scholar
Giordanengo, P. (1992) Biologic, éco-éthologie et dynamique des populations du scolyte des grains de café, Hypothenemus hampei Ferr. (Coleoptera, Scolytidae), en Nouvelle-Calédonie. 109 pp. Doctoral thesis, Université de Rennes I.Google Scholar
Grasela, J.J. & Steiner, W. W. M. (1993) Population genetic structure among populations of three predaceous nabid species: Nabis alternatus Parshley, Nabis roseipennis Reuter and Nabis americoferous Carayon (Hemiptera: Nabidae). Biochemical Systematics and Ecology 21, 813823.CrossRefGoogle Scholar
Hamilton, W.D. (1967) Extraordinary sex ratios. Science 156, 477488.CrossRefGoogle ScholarPubMed
Hargreaves, H. (1926) Notes on the coffee berry borer (Stephanoderis hampei, Ferr.) in Uganda. Bulletin of Entomological Research 16, 347354.Google Scholar
Hartl, D.L. & Clark, A.G. (1989) Principles of population genetics. 2nd edn.682 pp. Sunderland, Massachusetts, Sinauer Associates.Google Scholar
King, P.S. (1988) Distribution and genetic structure of two allopatric beetle (Coleoptera: Melyridae) species on rock outcrops in the Southeast. Annals of the Entomological Society of America 81, 890898.Google Scholar
Kirkendall, L.R. (1993) Ecology and evolution of biased sex ratios in bark and ambrosia beetles. pp. 235345in Wrerisch, D.L. & Ebbert, M.A. (Eds) Evolution and Diversity of Sex Ratio in Insects and Mites. New York, Chapman & Hall.Google Scholar
Le Pelley, R.H. (1968) Pests of coffee. 590 pp. London, Longmans, Green and Co.Google Scholar
López, A. & Frérot, B. (1993) Statut physiologique des femelles colonisatrices de Hypothenemus hampei (Ferr.). Vol. 2 pp. 831832in 15éme Colloque Scientifique International sur le Café, 6–11 June 1993, Montpellier, France. Association Scientifique Internationale du Café.Google Scholar
Mathieu, F., Brun, L.O. & Frérot, B. (1993) Dynamique de sortie de Hypothenemus hampei en présence de cerises vertes. Vol. 2 pp. 833836in 15éme Collogue Scientifique International sur le Café, 6–11 June 1993, Montpellier, France. Association Scientifique Internationale du Café.Google Scholar
McKenzie, J.A. (1984) Dieldrin and diazinon resistance in populations of the Australian sheep blowfly, Lucilia cuprina, from sheep-grazing areas and rubbish tips. Australian Journal of Biological Science 37, 367374.CrossRefGoogle ScholarPubMed
Muñoz, R. (1989) Ciclo biológico y reproducción partenogenética de la broca del fruto del cafeto Hypothenemus hampei (Ferr.). Turrialba 39, 415421.Google Scholar
Nei, M. (1977) F-statistics and analysis of gene diversity in subdivided populations. Annals of Human Genetics 41, 225233.Google Scholar
Parkin, C.S., Brun, L.O. & Suckling, D.M. (1992) Spray deposition in relation to endosulfan resistance in coffee berry borer (Hypothenemus hampei) (Coleoptera: Scolytidae) in New Caledonia. Crop Protection 11, 213220.CrossRefGoogle Scholar
Prout, T. & Barker, J. S. F. (1993) F-statistics in Drosophila buzzatii: selection, population size and inbreeding. Genetics 134, 369375.Google Scholar
Reilly, L.M. (1987) Measurements of inbreeding and average relatedness in a termite population. American Naturalist 130, 339349.CrossRefGoogle Scholar
Roush, R.T. & Daly, J.C. (1990) The role of population genetics in resistance research and management. pp. 97152in Roush, R.T. & Tabashnik, B.E. (Eds) Pesticide resistance in arthropods. New York, Chapman and Hall.Google Scholar
Rowell-Rahier, M. (1992) Genetic structure of leaf-beetle populations: Microgeographic and sexual differentiation in Oreina cacaliae and O. speciosissima. Entomologia Experimentalis et Applicata 65, 247257.Google Scholar
Tabashnik, B.E. (1990) Modeling and evaluation of resistance management tactics. pp. 153182in Roush, R.T. & Tabashnik, B.E. (Eds) Pesticide resistance in arthropods. New York, Chapman and Hall.Google Scholar
Ticheler, J. H. G. (1961) Étude analytique de l'épidémiologie du scolyte des graines de café Stephanoderes hampei Ferr., en Côte d'lvoire. Mededelingen Landbouwhogeschool te Wageningen 61, 149.Google Scholar
Weir, B.S. & Cockerham, C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
Whitehead, J.R., Roush, R.T. & Norment, B.R. (1985) Resistance stability and coadaptation in diazinon-resistant house flies (Diptera: Muscidae). Journal of Economic Entomology 78, 2529.CrossRefGoogle ScholarPubMed
Wright, S. (1969) Evolution and the genetics of populations. Vol. II. The theory of gene frequencies. 511 pp. Chicago, University of Chicago Press.Google Scholar