Hostname: page-component-6d856f89d9-sp8b6 Total loading time: 0 Render date: 2024-07-16T07:59:32.294Z Has data issue: false hasContentIssue false

Interactions between the solitary endoparasitoid, Meteorus gyrator (Hymenoptera: Braconidae) and its host, Lacanobia oleracea (Lepidoptera: Noctuidae), infected with the entomopathogenic microsporidium, Vairimorpha necatrix (Microspora: Microsporidia)

Published online by Cambridge University Press:  09 March 2007

R.E. Down*
Affiliation:
Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK
F. Smethurst
Affiliation:
Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK
H.A. Bell
Affiliation:
Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK
J.P. Edwards
Affiliation:
Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK
*
*Fax: +44(0)1904 462 111 E-mail: r.down@csl.gov.uk

Abstract

Infection of Lacanobia oleracea(Linnaeus) larvae with the microsporidium Vairimorpha necatrix(Kramer) resulted in significant effects on the survival and development of the braconid parasitoid, Meteorus gyrator(Thunberg). Female M. gyrator did not show any avoidance of V. necatrix-infected hosts when they were selecting hosts for oviposition. When parasitism occurred at the same time as infection by the pathogen, or up to four days later, no significant detrimental effects on the parasitoid were observed. However, when parasitism occurred six to eight days after infection, a greater proportion(12.5–14%) of hosts died before parasitoid larvae egressed. Successful eclosion of adult wasps was also reduced. When parasitism and infection were concurrent, parasitoid larval development was significantly faster in infected hosts, and cocoons were significantly heavier. However, as the time interval between infection and parasitism increased, parasitoid larval development was significantly extended by up to two days, and the cocoons formed were significantly (c. 20%) smaller. Vairimorpha necatrix spores were ingested by the developing parasitoid larvae, accumulated in the occluded midgut, and were excreted in the meconium upon pupation.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreadis, T.G. (1980) Nosema pyrausta infection in Macrocentrus grandii, a braconid parasite of the European corn borer, Ostrinia nubilalis. Journal of Invertebrate Pathology 35, 229233.CrossRefGoogle Scholar
Askew, R.R. & Shaw, M.R. (1986) Parasitoid communities: their size, structure and development. 13th Symposium of the Royal Entomological Society of LondonLondon, 225264.Google Scholar
Bell, H.A., Marris, G.C., Bell, J. & Edwards, J.P. (2000) The biology of Meteorus gyrator (Hymenoptera: Braconidae), a solitary endoparasitoid of the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae). Bulletin of Entomological Research 90, 299308.CrossRefGoogle ScholarPubMed
Bell, H.A., Marris, G.C., Smethurst, F. & Edwards, J.P. (2003) The effect of host stage and temperature on selected developmental parameters of the solitary endoparasitoid Meteorus gyrator (Thun.) (Hym., Braconidae). Journal of Applied Entomology 127, 332339.CrossRefGoogle Scholar
Brooks, W.M. (1973) Protozoa: host–parasite–pathogen interrelationships. Miscellaneous Publications of the Entomological Society of America 9, 105111.Google Scholar
Brooks, W.M. (1993) Host–parasitoid–pathogen interactions Parasites and pathogens of insects Volume 2: Pathogens 231272 Beckage N.E. Thompson S.N. Federici B.A. Academic Press San Diego.Google Scholar
Corbitt, T.S., Bryning, G., Olieff, S. & Edwards, J.P. (1996) Reproductive, developmental and nutritional biology of the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae) reared on artificial diet. Bulletin of Entomological Research 86, 647657.CrossRefGoogle Scholar
Cossentine, J.E. & Lewis, L.C. (1986) Impact of Vairimorpha necatrix and Vairimorpha sp. (Microspora: Microsporida) on Bonnetia comta (Diptera: Tachinidae) within Agrotis ipsilon (Lepidoptera: Noctuidae) hosts. Journal of Invertebrate Pathology 47, 303309.CrossRefGoogle Scholar
Cossentine, J.E. & Lewis, L.C. (1987) Development of Macrocentrus grandii Goidanich within microsporidian-infected Ostrinia nubilalis (Hübner) host larvae. Canadian Journal of Zoology 65, 25322535.CrossRefGoogle Scholar
Cossentine, J.E. & Lewis, L.C. (1988) Impact of Nosema pyrausta, Nosema sp. and a nuclear polyhedrosis virus on Lydella thompsoni within infected Ostrinia nubilalis hosts. Journal of Invertebrate Pathology 51, 126132.CrossRefGoogle Scholar
Darwish, A., Weidner, E. & Fuxa, J.R. (1989) Vairimorpha necatrix in adipose cells of Trichoplusia ni. Journal of Protozoology 36, 308311.CrossRefGoogle Scholar
Down, R.E., Bell, H.A., Kirkbride-Smith, A.E. & Edwards, J.P. (2004a) The pathogenicity of Vairimorpha necatrix (Microspora: Microsporidia) against the tomato moth, Lacanobia oleracea (Lepidoptera: Noctuidae) and its potential use for the control of lepidopteran glasshouse pests. Pest Management Science 60, 755764.CrossRefGoogle ScholarPubMed
Down, R.E., Bell, H.A., Matthews, H.J., Kirkbride-Smith, A.E. & Edwards, J.P. (2004b) Dissemination of the biocontrol agent Vairimorpha necatrix by the spined soldier bug, Podisus maculiventris. Entomologia Experimentalis et Applicata 110, 103114.CrossRefGoogle Scholar
El-Sheikh, M.A.K., Ibrahim, S.M., El-Maasarawy, S.A.S. (1993) Food consumption and utilization in larvae of Mythimna (= Leucania) loreyi (Dup.) parasitized by Meteorus gyrator Thun. Bulletin of the Entomological Society of Eygpt 71, 173184.Google Scholar
Elzinga, J.A., Harvey, J.A., Biere, A. (2003) The effects of host weight at parasitism on fitness correlates of the gregarious koinobiont parasitoid Microplitis tristis and consequences for food consumption by its host, Hadena bicruris. Entomologia Experimentalis et Applicata 108, 95106.CrossRefGoogle Scholar
Foster, G.N. (1980) Possibilities for the control of tomato moth (Lacanobia oleracea). Bulletin SROP 3, 4552.Google Scholar
Fuxa, J.R. (1981) Susceptibility of lepidopterous pests to two types of mortality caused by the microsporidium Vairimorpha necatrix. Journal of Economic Entomology 74, 99102.CrossRefGoogle Scholar
Fuxa, J.R. & Brooks, W.M. (1979) Effects of Vairimorpha necatrix in sprays and corn meal on Heliothis species in tobacco, soybeans and sorghum. Journal of Economic Entomology 72, 462467.CrossRefGoogle Scholar
Geden, C.J., Ferreira, de, M.A., Pires, do, A. (2003) Effects of Nosema disease on fitness of the parasitoid Tachinaephagus zealandicus (Hymenoptera: Encyrtidae). Environmental Entomology 32, 11391145.CrossRefGoogle Scholar
Goto, C., Tsutsui, H., Hayakawa, H. (1986) Parasites of some noctuid larvae in Hokkaido. II. Parasitic wasps. Japanese Journal of Applied Entomology 3, 205207.Google Scholar
Griffin, M.J. & Savage, M.J. (1983) Control of pests and diseases of protected crops. Tomatoes UK Ministry of Agriculture, Fisheries and Food. UKGoogle Scholar
Harvey, J.A., Bezemer, T.M., Elzinga, J.A. & Strand, M.R. (2004) Development of the solitary endoparasitoid Microplitis demolitor: host quality does not increase with host age and size. Ecological Entomology 29, 3543.CrossRefGoogle Scholar
Henn, M.W. & Solter, L.F. (2000) Food utilization values of gypsy moth Lymantria dispar (Lepidoptera: Lymantriidae) larvae infected with the microsporidium Vairimorpha sp. (Microsporidia: Burenellidae). Journal of Invertebrate Pathology 76, 263269.CrossRefGoogle ScholarPubMed
Hoch, G., Schopf, A. (2001) Effects of Glyptapanteles liparidis (Hym.: Braconidae) parasitism, polydnavirus, and venom on development of Microsporidia-infected and uninfected Lymantria dispar (Lep.: Lymantriidae) larvae. Journal of Invertebrate Pathology 77, 3743.CrossRefGoogle ScholarPubMed
Hoch, G., Schopf, A. & Maddox, J.V. (2000) Interactions between an entomopathogenic microsporidium and the endoparasitoid Glyptapanteles liparidis within their host, the gypsy moth larva. Journal of Invertebrate Pathology 75, 5968.CrossRefGoogle ScholarPubMed
Hoch, G., Schafellner, C., Henn, M.W., Schopf, A. (2002) Alterations in carbohydrate and fatty acid levels of Lymantria dispar larvae caused by a microsporidian infection and potential adverse effects on a co-occurring endoparasitoid, Glyptapanteles liparidis. Archives of Insect Biochemistry and Physiology 50, 109120.CrossRefGoogle ScholarPubMed
Hochberg, M.E., Hassell, M.P. & May, R.M. (1990) The dynamics of host–parasitoid–pathogen interaction. American Naturalist 135, 7494.CrossRefGoogle Scholar
Hughes, P.R. & Wood, H.A. (1981) A synchronous peroral technique for the bioassay of insect viruses. Journal of Invertebrate Pathology 37, 154159.CrossRefGoogle Scholar
Ionescu, C., Pasol, P. (1987) The structure, distributional and seasonal dynamics of the main noctuid species injurious to crop plants in Romania in 1984. Lucrari Stiintifice, Institutul Agronomic ‘Nicolae Balcescu’, Bucuresti, Seria A, Agronomie 30, 4957.Google Scholar
Jaques, R.P. (1977) Field efficacy of viruses infectious to the cabbage looper and imported cabbageworm on late cabbage. Journal of Economic Entomology 70, 111118.CrossRefGoogle Scholar
Kramer, J.P. (1965) Nosema necatrix sp. n. and Thelohania diazoma sp. n., microsporidians from the armyworm Pseudaletia unipuncta (Haworth). Journal of Invertebrate Pathology 7, 117121.CrossRefGoogle Scholar
Laigo, F.M., Tamashiro, M. (1967) Interactions between a microsporidian pathogen of the lawn-armyworm and the hymenopterous parasite Apanteles marginiventris. Journal of Invertebrate Pathology 9, 546554.CrossRefGoogle Scholar
Lloyd, L. (1920) The habits of the glasshouse tomato moth, Polia (Hadena) oleracea and its control. Annals of Applied Biology 7, 66102.CrossRefGoogle Scholar
Maddox, J.V. & Sprenkel, R.K. (1978) Some enigmatic microsporidia of the genus Nosema. Miscellaneous Publications of the Entomological Society of America 11, 6584.Google Scholar
Maddox, J.V., Brooks, W.M. & Fuxa, J.R. (1981) Vairimorpha necatrix a pathogen of agricultural pests: potential for pest control 587594 in Burges, H.D.(Ed) Microbial control of pests and plant diseases LondonAcademic Press.Google Scholar
Matthews, H.J., Smith, I. & Edwards, J.P. (2002) Lethal and sublethal effects of a granulovirus on the tomato moth Lacanobia oleracea. Journal of Invertebrate Pathology 80, 7380.CrossRefGoogle ScholarPubMed
Mistric, W.J. & Smith, F.D. (1973) Tobacco budworm: control on flue-cured tobacco with certain microbial pesticides. Journal of Economic Entomology 66, 979982.CrossRefGoogle Scholar
Mitchell, M.J., Cali, A. (1994) Vairimorpha necatrix (Microsporida: Burenellidae) affects growth and development of Heliothis zea (Lepidoptera: Noctuidae) raised at various temperatures. Journal of Economic Entomology 87, 933940.CrossRefGoogle Scholar
Moawed, S.M., Marei, S.S., Saleh, M.R. & Matter, M.M.Impact of Vairimorpha ephestiae (Microsporidia: Nosematidae) on Bracon hebetor (Hymenoptera: Braconidae), an external parasite of the American bollworm, Heliothis armigera (Lepidoptera: Noctuidae). European Journal of Entomology 94,(1997) 561565.Google Scholar
Nealis, V.G. & Smith, S.M. (1987) Interaction of Apanteles fumiferanae (Hymenoptera: Braconidae) and Nosema fumiferanae (Microsporidia) parasitizing spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Canadian Journal of Zoology 65, 20472050.CrossRefGoogle Scholar
Poitout, S., Bues, R. (1974) Elevage de chenilles de 28 espèces de Lépidoptères Noctuidae et de 2 espèces d'Arctiidae sur millieu artificiel simple. Particularités de l'élevage selon les espèces. Annales de Zoologie – Ecologie Animale 6, 431441.Google Scholar
Schuld, M., Madel, G., Schmuck, R. (1999) Impact of Vairimorpha sp. (Microsporidia: Burenellidae) on Trichogramma chilonis (Hymenoptera, Trichogrammatidae), a hymenopteran parasitoid of the cabbage moth, Plutella xylostella (Lepidoptera, Yponomeutidae). Journal of Invertebrate Pathology 74, 120126.CrossRefGoogle Scholar
Thomson, H.M. (1958) The effect of a microsporidian parasite of the spruce budworm, Choristoneura fumiferana (Clem.), on two internal hymenopterous parasites. Canadian Entomologist 90, 694696.CrossRefGoogle Scholar
Wanjberg, E., Scott, J.K. & Quimby, P.C. (2001) Evaluating indirect ecological effects of biological control 261 Wallingford, Oxon CAB International.Google Scholar
Wilson, G.G. (1984) Pathogenicity of Nosema disstriae, Pleistophora schubergi and Vairimorpha necatrix (Microsporidia) to larvae of the forest tent caterpillar, Malacosoma disstria. Zeitschrift für Parasitenkunde 70, 763767.CrossRefGoogle Scholar
Wilson, G.G. (1986) The effects of Vairimorpha necatrix (Microsporida) on the spruce budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae). Proceedings of the Entomological Society of Ontario 117, 9193.Google Scholar