Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T08:28:40.202Z Has data issue: false hasContentIssue false

Oviposition responses to patch quality in the larch ladybird Aphidecta obliterata (Coleoptera: Coccinellidae): effects of aphid density, and con- and heterospecific tracks

Published online by Cambridge University Press:  09 March 2007

T.H. Oliver
Affiliation:
Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
J.E.L. Timms
Affiliation:
Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
A. Taylor
Affiliation:
Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
S.R. Leather*
Affiliation:
Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
*
*Fax: ++44 (0)2075942339 E-mail: s.leather@ic.ac.uk

Abstract

The effects and persistence of oviposition-deterring semiochemical cues from conspecific and heterospecific larval tracks on the oviposition rate of Aphidecta obliterata (Linnaeus) females were investigated. In addition, the effects of varying aphid prey density were considered and also whether any resulting response originated from differential nutritional status of females and/or due to aphid odour stimuli. The existence of oviposition responses to conspecific egg chemicals was also considered. Gravid A. obliterata females were deterred from oviposition by conspecific larval tracks and the effect was density dependent. Females actively avoided searching in these contaminated areas. Tracks induced a significant effect on oviposition for up to three days. Heterospecific tracks of the coccinellid Adalia bipunctata (Fabricius) or the chrysopid Chrysoperla carnea (Stephens) did not induce any oviposition response in A. obliterata females. Increasing aphid density induced increased oviposition rate in A. obliterata females. Nutritional status of females was an important factor in the relationship between aphid density and oviposition rate, but aphid associated cues (odours) were not. There was an inhibitory effect of extracts of conspecific egg-surface chemicals on oviposition by A. obliterata females. In the field, cannibalism, competition and limited food availability represent the major threats to egg and larval survival. Patch quality assessment mechanisms enable females to lay eggs at sites where offspring survival is maximized. Oviposition-deterring semiochemicals tend to promote more even distribution of predators over prey patches.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwala, B.K. & Dixon, A.F.G. (1992) Laboratory study of cannibalism and interspecific predation in ladybirds. Ecological Entomology 17, 303309.CrossRefGoogle Scholar
Agarwala, B.K., Bhattacharya, S. & Bardhanroy, P. (1998) Who eats whose eggs? Intra- versus inter-specific interactions in starving ladybird beetles predaceous on aphids. Ethology, Ecology and Evolution 10, 361368.CrossRefGoogle Scholar
Agarwala, B.K. & Yasuda, H. (2001) Overlapping oviposition and chemical defense of eggs in two co-occurring species of ladybird predators of aphids. Journal of Ethology 19, 4753.CrossRefGoogle Scholar
Agarwala, B.K., Yasuda, H. & Kafita, Y. (2003) Effect of conspecific and heterospecific faeces on foraging and oviposition of two predatory ladybirds: role of faecal cues in predator avoidance. Journal of Chemical Ecology 29, 357376.CrossRefGoogle ScholarPubMed
Amman, G.D. (1966) Aphidecta obliterata Coleoptera. Coccinellidae) an introduced predator of the balsam woolly aphid, Chermes picea (Homoptera: Chermidae), established in North Carolina. Journal of Economic Entomology 59, 506508.CrossRefGoogle Scholar
Banks, C.J. (1954) The searching behaviour of coccinellid larvae. Journal of Animal Behaviour 23, 3738.CrossRefGoogle Scholar
Beddington, J.R., Free, C.A. & Lawton, J.H. (1978) Characteristics of successful natural enemies in models of biological control in insect pests. Nature 273, 513518.CrossRefGoogle ScholarPubMed
Blum, M.S. (1996) Semiochemical parsimony in the Arthropoda. Annual Review of Entomology 41, 353374.CrossRefGoogle ScholarPubMed
Carter, M.C. & Dixon, A.F.G. (1984) Honeydew: an arrestant stimulus for coccinellids. Ecological Entomology 9, 383387.CrossRefGoogle Scholar
Carter, C., Halldòrson, G. (1998) Origins and background to the green spruce aphid in Europe. pp. 114 in Day, K.R., Halldòrson, G., Harding, S. & Straw, N.A.. (Eds) The green spruce aphid in Western Europe: ecology, status, impacts and prospects for management. Forestry Commission Technical, Paper 24 Edinburgh.Google Scholar
Chapman, R.F. (1998) The insects – structure and function. 4th edn. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Dixon, A.F.G. (1959) An experimental study of the searching behaviour of the predatory coccinellid beetle Adalia decempunctata (L.). Journal of Animal Ecology 28, 259281.CrossRefGoogle Scholar
Dixon, A.F.G. (1997) Patch quality and fitness in predatory ladybirds. Ecological Studies 130, 205223.CrossRefGoogle Scholar
Dixon, A.F.G. (2000) Insect predator–prey dynamics. Ladybird beetles and biological control. Cambridge, Cambridge University Press.Google Scholar
Doumbia, M., Hemptinne, J.-L. & Dixon, A.F.G. (1998) Asessment of patch quality by ladybirds: role of larval tracks. Oecologia 113, 197202.CrossRefGoogle Scholar
Evans, W. & Dixon, A.F.G. (1986) Cues for oviposition by ladybird beetles (Coccinellidae): response to aphids. Journal of Animal Ecology 55, 10271034.CrossRefGoogle Scholar
Gagné, I., Corderre, D. & Mauffette, Y. (2002) Egg cannibalism by Coleomegilla lengi neonates; preference even in the presence of essential prey. Ecological Entomology 27, 285291.CrossRefGoogle Scholar
Hassell, M.P. (1978) The dynamics of arthropod predator–prey systems. New Jersey, Princeton University Press.Google ScholarPubMed
Hemptinne, J.-L. & Dixon, A.F.G. (1997) Are aphidophagous ladybirds (Coccinellidae) prudent predators. Biological Agriculture and Horticulture 15, 151159.CrossRefGoogle Scholar
Hemptinne, J.-L., Dixon, A.F.G. & Goffin, J. (1992) Attack strategy of ladybird beetles (Coccinellidae): factors shaping their numerical response. Oecologia 90, 238245.CrossRefGoogle ScholarPubMed
Hemptinne, J.-L., Lognay, G. & Dixon, A.F.G. (1998) Mate recognition in the two-spot ladybird beetle, Adalia bipunctata: role of chemical and behavioural cues. Journal of Insect Physiology 44, 11631171.CrossRefGoogle Scholar
Hemptinne, J.-L., Doumbia, M. & Dixon, A.F.G. (2000a) Assessment of patch quality by ladybirds: role of aphid and plant phenology. Journal of Insect Behaviour 13, 353359.CrossRefGoogle Scholar
Hemptinne, J.-L., Gaudin, M., Dixon, A.F.G. & Lognay, G. (2000b) Social feeding in ladybird beetles: adaptive significance and mechanism. Chemoecology 10, 149152.CrossRefGoogle Scholar
Hemptinne, J.-L., Lognay, G., Gauthier, C. & Dixon, A.F.G. (2000c) Role of surface chemical signals in egg cannibalism and intraguild predation in ladybirds (Coleoptera: Coccinellidae). Chemoecology 10, 123128.CrossRefGoogle Scholar
Hemptinne, J.-L., Lognay, G., Doumbia, M. & Dixon, A.F.G. (2001) Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology 11, 4347.CrossRefGoogle Scholar
Hodek, I. (1973) Biology of the Coccinellidae. Prague, Academia Press.CrossRefGoogle Scholar
Jansen, A., Bruin, J., Jacobs, G., Schraag, R. & Sabelis, M.W. (1997) Predators use volatiles to avoid prey patches with conspecifics. Journal of Animal Ecology 66, 223232.CrossRefGoogle Scholar
Kosaki, A. & Yamaoka, R. (1996) Chemical composition of footprints and cuticula lipids of three species of lady beetles. Japanese Journal of Applied Zoology and Entomology 40, 4753.CrossRefGoogle Scholar
Majerus, M. (1994) Ladybirds Somerset Harper Collins.Google Scholar
Majerus, M. & Kearns, P. (1989) Ladybirds. Slough, Bucks Richmond Publishing.Google Scholar
Mills, N.J. (1982) Voracity, cannibalism and coccinellid predation. Annals of Applied Biology 7, 305315.Google Scholar
Pulliainen, E. (1966) On the hibernation sites of Myrrha octodecimguttata L. (Col., Coccinellidae) on the butts of the pine (Pinus sylvestris L.). Annales Entomologica Fennici 32, 99104.Google Scholar
Růžička, Z. (1994) Oviposition-deterring pheromone in Chrysopa oculata (Neuroptera: Chrysopidae). European Journal of Entomology 91, 361370.Google Scholar
Růžička, Z. (1997) Recognition of oviposition-deterring allomones by aphidophagous predators (Neuroptera: Chrysopidae, Coleoptera: Coccinellidae). European Journal of Entomology 94, 431434.Google Scholar
Růžička, Z. (1998) Further evidence of oviposition-deterring allomone in chrysopids (Neuroptera: Chrysopidae). European Journal of Entomology 95, 3539.Google Scholar
Růžička, Z. (2001) Oviposition responses of aphidophagous coccinellids to tracks of ladybird (Coleoptera: Coccinellidae) and lacewing (Neuroptera: Chrysopidae) larvae. European Journal of Entomology 98, 183188.CrossRefGoogle Scholar
Růžička, Z. (2002) Persistence of deterrent larval tracks in Coccinella septempunctata, Cycloneda limbifer and Semiadalia undecimnotata (Coleoptera: Coccinellidae). European Journal of Entomology 99, 471475.CrossRefGoogle Scholar
Růžička, Z. (2003) Perception of oviposition-deterring larval tracks in aphidophagous coccinellids Cycloneda limbifer and Ceratomegilla undecimnotata (Coleoptera: Coccinellidae). European Journal of Entomology 100, 345350.CrossRefGoogle Scholar
Růžička, Z. & Havelka, J. (1998) Effects of oviposition-deterring pheromone and allomones on Aphidoletes aphidimyza (Diptera: Cecidomyiidae). European Journal of Entomology 95, 211216.Google Scholar
Salom, S. (1998) Evaluation of the feeding habits of H. axyridis and A. obliterata on HWA. in Hemlock Wooly Adelgid Newsletter, Issue 3. USDA Forest Service, Northeastern Area, State and Private Forestry, Forest Health Protection.Google Scholar
van Baalen, M. & Sabelis, M.W. (1993) Coevolution of patch selection strategies of predator and prey and the consequences for ecological stability. American Naturalist 142, 646670.CrossRefGoogle ScholarPubMed
Wratten, S.D. (1973) The effectiveness of the coccinellid beetle Adalia bipunctata as a predator of the lime aphid Eucallipterus tiliae (L.). Journal of Animal Ecology 1, 139142.Google Scholar
Wylie, H.G. (1958) Observations on Aphidecta obliterata (L.) (Coleoptera: Coccinellidae), a predator of conifer-infesting Aphidoidea. Canadian Entomologist 90, 518521.CrossRefGoogle Scholar
Yasuda, H., Takagi, T. & Kogi, K. (2000) Effects of conspecific and heterospecific larval tracks on the oviposition behaviour of the predatory ladybird Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology 97, 551553.CrossRefGoogle Scholar