Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-13T07:55:26.171Z Has data issue: false hasContentIssue false

Studies on the water relations of adult locusts (orthoptera, acrididae). I. Respiration and the production of metabolic water

Published online by Cambridge University Press:  10 July 2009

J. P. Loveridge
Affiliation:
Department of Zoology, University of Rhodesia, P.O. Box MP 167, Mount Pleasant, Salisbury, Rhodesia
E. Bursell
Affiliation:
Department of Zoology, University of Rhodesia, P.O. Box MP 167, Mount Pleasant, Salisbury, Rhodesia

Abstract

Adult males of Locusta migratoria migratorioides (R. & F.) had an oxygen consumption of 120 mm3 g-1 h-1 at 15°C and 988 mm3 g-1 h-1 at 37°C, although respiratory quotient in fed insects (0.83) did not alter over this temperature range. Starvation or starvation and desiccation reduced the respiratory quotient from 0.83 to 0.77 indicating a shift in metabolism from carbohydrates towards fats. It is shown that the amount of biologically useful energy produced (in the form of ATP) remains the same, and that a shift from carbohydrate to fat metabolism requires the depletion of a smaller weight of food reserve. The shift is counterproductive in terms of metabolic water production, as only 0.28 mg g-1 h-1 water is produced in starved or desiccated locusts compared with 0.35 mg g-1 h-1 in fed animals.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1975

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrewartha, H. G. & Birch, L. C. (1954). The distribution and abundance of animals.— 782 pp. Chicago, University of Chicago Press.Google Scholar
Barton-Browne, L. B. (1964). Water regulation in insects.—A. Rev. Ent. 9, 6382.CrossRefGoogle Scholar
Bursell, E. (1959 a). The water balance of tsetse flies.—Trans. R. ent. Soc. Lond. 111, 205235.CrossRefGoogle Scholar
Bursell, E. (1959 b). Physiological studies on Glossina.—Rep. E. Afr. Trypan. Res. Org. no. 9, 3235.Google Scholar
Bursell, E. (1964). Environmental aspects: humidity.—In Rockstein, M. (Ed.) Physiology of Insecta, vol. 1.—323361. New York, Academic Press.Google Scholar
Buxton, P. A. (1930). Evaporation from the mealworm (Tenebrio: Coleoptera) and atmospheric humidity.—Proc. R. Soc. (B) 106, 560577.Google Scholar
Cirano, R. & Zeledón, R: (1964). Observaciones sobre capacidad alimenticia y respiración de Triatoma infestans y Rhodnius prolixus (Hemiptera, Reduviidae).—Revta Biol. trop. 12, 271285.Google Scholar
Clarke, K. U. (1957). The relationship of oxygen consumption to age and weight during the post-embryonic growth of Locusta migratoria L..—J. exp. Biol. 34, 2941.Google Scholar
Cockbain, A. J. (1961). Water relationships of Aphis fabae Scop, during tethered flight.—J. exp. Biol. 38, 175180.Google Scholar
Dadd, R. H. (1960). Observations on the palatability and utilisation of food by locusts, with particular reference to the interpretation of performances in growth trials using synthetic diets.—Entomologia exp. appl. 3, 283304.Google Scholar
Dixon, M. (1951). Manometric methods as applied to the measurement of cell respiration and other processes, 3rd ed.—165 pp. Cambridge, Cambridge University Press.Google Scholar
Edney, E. B. (1957). The water relations of terrestrial arthropods.—109 pp. Cambridge, Cambridge University Press.Google Scholar
Edwards, G. A. (1953). Respiratory metabolism. In Roeder, K. (Ed.) Insect physiology.— 96146. New York, Wiley.Google Scholar
Gilmour, D. (1961). The biochemistry of insects.—343 pp. London, Academic Press.Google Scholar
Hamilton, A. G. (1964). The occurrence of periodic or continuous discharge of carbon dioxide by male desert locusts (Schistocerca gregaria Forskål) measured by an infra-red gas analyser.—Proc. R. Soc. (B) 160, 373395.Google ScholarPubMed
Keister, M. & Buck, J. (1964). Respiration: some exogenous and endogenous effects on rate of respiration.—In Rockstein, M. (Ed.) Physiology of Insecta, vol. III.—617658. New York, Academic Press.Google Scholar
Kleiber, M. (1961). The fire of life; an introduction to animal energetics.—454 pp. New York, Wiley.Google Scholar
Kleinman, L. W. (1934). The effect of temperature upon the respiratory quotients of nymphs of the grasshopper Chortophaga veridifasciata DeGeer, and the larvae of the Japanese beetle, Popillia japonica Newman, with reference to changes during hibernation.—J. cell. comp. Physiol. 4, 221235.CrossRefGoogle Scholar
Krogh, A. & Weis-Fogh, T. (1951). The respiraory exchange of the desert locust (Schistocerca gregaria) before, during and after flight.—J. exp. Biol. 28, 344357.CrossRefGoogle Scholar
Krüger, F. (1958). Grössenabhängigkeit des Sauerstoffverbrauchs einheimischer Grillen.—Biol. Zbt. 77, 581588.Google Scholar
Loveridge, J. P. (1967). The water balance of Locusta.—Ph.D. thesis, University of London.Google Scholar
Loveridge, J. P. (1968). The control of water loss in Locusta migratoria migratorioides R. & F. II. Water loss through the spiracles.—J. exp. Biol. 49, 1529.Google Scholar
Loveridge, J. P. (1973). Age and the changes in water and fat content of adult laboratory-reared Locusta migratoria migratorioides R. & F.—Rhod. J. agric. Res. 11, 131143.Google Scholar
Ludwig, D. (1937). The effect of different relative humidities on respiratory metabolism and survival of the grasshopper Chortophaga viridifasciata DeGeer.—Physiol. Zoöl. 10, 342351.CrossRefGoogle Scholar
Mellanby, K. (1932). The effect of atmospheric humidity on the metabolism of the fasting mealworm (Tenebrio molitor L., Coleoptera).—Proc. R. Soc. (B) 111, 376390.Google Scholar
Mellanby, K. (1942). Metabolic water and desiccation.—Nature, Lond. 150, 21.CrossRefGoogle Scholar
Neville, A. C. (1965). Energy and economy in insect flight.—Sci. Prog., Lond. 53, 203219.Google Scholar
Punt, A. (1956). Further investigations on the respiration of insects.—Physiologia comp. Oecol. 4, 121131.Google Scholar
Roussel, J.-P. (1963). Etude de la consommation d'oxygene chez Locusta migratoria. LJ. Insect Physiol. 9, 349361.Google Scholar
Schmidt-Nielsen, K. (1964). Desert animals, physiological problems of heat and water.— 277 pp. London, Oxford University Press.Google Scholar
Shaw, J. & Stobbart, R. H. (1972). The water balance and osmoregulatory physiology of the desert locust (Schistocerca gregaria) and other desert and xeric arthropods.—Symp. Zool. Soc. Lond. no. 31, 1538.Google Scholar
Staddon, B. W. (1964). Water balance in Corixa dentipes (Thoms.) (Hemiptera, Heteroptera).—J. exp. Biol. 41, 609619.Google Scholar
Weis-Fogh, T. (1952). Weight economy of flying insects.—Int. Congr. Ent. 9th 1, 341347.Google Scholar