Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-16T21:32:03.592Z Has data issue: false hasContentIssue false

An application of Jacobi type polynomials to irrationality measures

Published online by Cambridge University Press:  17 April 2009

Ari Heimonen
Affiliation:
Department of MathematicsUniversity of Oulu90570 OuluFinland
Tapani Matala-Aho
Affiliation:
Department of MathematicsUniversity of Oulu90570 OuluFinland
Keijo Väänänen
Affiliation:
Department of MathematicsUniversity of Oulu90570 OuluFinland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The paper provides irrationality measures for certain values of binomial functions and definite integrals of some rational functions. The results are obtained using Jacobi type polynomials and divisibility considerations of their coefficients.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Adleman, L.M., Pomerance, C. and Rumely, R.S., ‘On distinguishing prime numbers from composite numbers’, Ann. of Math. 117 (1983), 173206.CrossRefGoogle Scholar
[2]Baker, A., ‘Rational approximation to 3√2 and other algebraic numbers’, Quart. J. Math.Oxford Ser. (2) 15 (1964), 375383.CrossRefGoogle Scholar
[3]Bundschuh P., P., ‘Zur Approximation gewisser p-adischer algebraisher Zahlen durch rationalen Zahlen’, J. Reine Angew. Math 265 (1974), 154159.Google Scholar
[4]Chudnovsky, G.V., ‘Number theoretic applications of polynomials with rational coefficients defined by extremality conditions’, in Arithmetic and geometry (Birkhäuser, Boston, 1983), pp. 61105.CrossRefGoogle Scholar
[5]Chudnovsky, G.V., ‘On the method of Thue-Siegel’, Ann. of Math. 117 (1983), 325382.CrossRefGoogle Scholar
[6]Danilov, L.V., ‘Rational approximations of some functions at rational points’, (in Russian), Mat. Zametki 24 no. 4 (1978), 449458.Google Scholar
[7]Dubitskas, A.K., ‘Approximation of π/√3 by rational fractions’, (in Russian), Vestnik Moskov. Univ. Ser. I Mat. Mekh. 42 no. 6 (1987), 7376.Google Scholar
[8]Easton, D., ‘Effective irrationality measures for certain algebraic numbers’, Math. Comp. 46 (1986), 613622.CrossRefGoogle Scholar
[9]Erdélyi, H.A., Magnus, W., Oberhettinger, F. and Tricomi, F.G., Higher transcendental functions 1 (McGraw-Hill Book Company, Inc., New York, 1953).Google Scholar
[10]Hata, M., ‘Legendre type polynomials and irrationality measures’, J. Reine Angew. Math. 407 (1990), 99125.Google Scholar
[11]Hata, M., ‘Irrationality measures of the values of hypergeometric functions’, Acta Arith. LX.4 (1992), 335347.CrossRefGoogle Scholar
[12]Hata, M., ‘Rational approximations to π and some other numbers’, Acta. Arith. LXIII.4 (1993), 335349.CrossRefGoogle Scholar
[13]Heimonen, A., Matala-aho, T. and Väänänen, K., ‘On irrationality measures of the values of Gauss hypergeometric function’, Manuscripta Math. 81 (1993), 183202.CrossRefGoogle Scholar
[14]Huttner, M., ‘Irrationalité de certaines integrales hypergéométriques’, J. Number Theory 26 (1987), 166178.CrossRefGoogle Scholar
[15]Rukhadze, E.A., ‘Lower estimate for rational approximations of In 2’, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 42, no. 6 (1987), 2529.Google Scholar
[16]van der Poorten, A.J., ‘On the arithmetic nature of definite integrals of rational functions’, Proc. Amer. Math. Soc. 29 (1971), 451456.CrossRefGoogle Scholar