Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T19:23:46.751Z Has data issue: false hasContentIssue false

The dynamics of an Action of Sp(2n, Z)

Published online by Cambridge University Press:  17 April 2009

Anthony Nielsen
Affiliation:
Department of Mathematics, La Trobe University, Melbourne, Australia 3086, e-mail: A.Nielsen@latrobe.edu.au
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

S.G. Dani and S. Raghavan showed the linear action of Sp(2n,ℤ) on the space of symplectic p-frames for pn is topologically transitive. We give an alternative proof, from the prime number theorem and the congruence subgroup theorem, and show the action of every finite index subgroup of Sp(2n, ℤ) is topologically transitive.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2005

References

[1]Apostol, T.M., Introduction to analytic number theory (Springer-Verlag, New York, 1976).Google Scholar
[2]Artin, E., Geometric algebra (Interscience Publishers, Inc., New York-London, 1957).Google Scholar
[3]Bass, H., Lazard, M., and Serre, J.-P., ‘Sous-groupes d'indice fini dans SL(n, Z)’, Bull. Amer. Math. Soc. 70 (1964), 385392.CrossRefGoogle Scholar
[4]Cairns, G. and Nielsen, A., ‘On the dynamics of the linear action of SL(n, Z)’, Bull. Austral. Math. Soc. 71 (2005), 359365.CrossRefGoogle Scholar
[5]Dani, S.G. and Raghavan, S., ‘Orbits of Euclidean frames under discrete linear groups’, Israel J. Math. 36 (1980), 300320.CrossRefGoogle Scholar
[6]Hobby, D. and Silberger, D.M., ‘Quotients of primes’, Amer. Math. Monthly 100 (1993), 5052.CrossRefGoogle Scholar
[7]Humphreys, J.E., Arithmetic groups, Lecture Notes in Mathematics 789 (Springer-Verlag, Berlin, 1980).CrossRefGoogle Scholar
[8]Mennicke, J.L., ‘Finite factor groups of the unimodular group’, Ann. of Math. (2) 81 (1965), 3137.CrossRefGoogle Scholar
[9]Sierpiński, W., Elementary theory of numbers, Monografie Matematyczne 42 (Państwowe Wydawnictwo Naukowe, Warsaw, 1964).Google Scholar