Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T05:26:30.371Z Has data issue: false hasContentIssue false

Elementary equivalence for finitely generated nilpotent groups and multilinear maps

Published online by Cambridge University Press:  17 April 2009

Francis Oger
Affiliation:
Equipe de Logique Mathematique, Université Paris VII – C.N.R.S. 2 place Jussieu, case 7012, 75251 Paris Cédex 05, France e-mail: oger@logique.jussieu.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We show that two finitely generated finite-by-nilpotent groups are elementarily equivalent if and only if they satisfy the same sentences with two alternations of quantifiers. For each integer n ≥ 2, we prove the same result for the following classes of structures:

(1) the (n + 2)-tuples (A1, …, An+1, f), where A1, …, An+1 are disjoint finitely generated Abelian groups and f: A1 × … × AnAn+1 is a n-linear map;

(2) the triples (A, B, f), where A, B are disjoint finitely generated Abelian groups and f: AnB is a n-linear map;

(3) the pairs (A, f), where A is a finitely generated Abelian group and f: AnA is a n-linear map.

In the proof, we use some properties of commutative rings associated to multilinear maps.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1998

References

[1]Burris, S., ‘Bounded Boolean powers and ≡n’, Algebra Universalis 8 (1978), 137138.CrossRefGoogle Scholar
[2]Chang, C.C. and Keisler, H.J., Model theory, Studies in Logic 73 (North-Holland, Amsterdam, 1973).Google Scholar
[3]Lang, S., Algebra (Addison-Wesley, Reading, MA, 1978).Google Scholar
[4]Myasnikov, A.G., Ninth All-union Symposium on Group Theory (Moscow State Univ., Moscow, 1984), pp. 4647.Google Scholar
[5]Myasnikov, A.G., ‘Definable Invariants of bilinear mappings’, Siberian Math. J. 31 (1990), 8999.CrossRefGoogle Scholar
[6]Myasnikov, A.G., ‘The theory of models of bilinear mappings’, Siberian Math. J. 31 (1990), 439451.CrossRefGoogle Scholar
[7]Oger, F., ‘Equivalence élémentaire entre groupes finis-par-abéliens de type fini’, Comment Math. Helv. 57 (1982), 469480.CrossRefGoogle Scholar
[8]Oger, F., ‘Des groupes nilpotents de classe 2 sans torsion de type fini peuvent ne pas être élémentairement équivalents’, C.R. Acad. Sci. Paris Sér. I Math. 294 (1982), 14.Google Scholar
[9]Oger, F., ‘Elementary equivalence and profinite completions: a characterization of finitely generated abelian-by-finite groups’, Proc. Amer. Math. Soc. 103 (1988), 10411048.CrossRefGoogle Scholar
[10]Oger, F., ‘Elementary equivalence and genus of finitely generated nilpotent groups’, Bull. Austral. Math. Soc. 37 (1988), 6168.CrossRefGoogle Scholar
[11]Oger, F., ‘Cancellation and elementary equivalence of finitely generated finite-by-nilpotent groups’, J. London Math. Soc. 44 (1991,), 173183.CrossRefGoogle Scholar
[12]Oger, F., ‘Isomorphism and elementary equivalence of multilinear maps’, Linear and Multilinear Algebra 36 (1994), 151174.CrossRefGoogle Scholar
[13]Oger, F., ‘Elementary equivalence for abelian-by-finite and nilpotent groups’ (to appear).Google Scholar
[14]Prest, M., Model theory and modules, London Math. Soc. Lecture Notes Series 130 (Cambridge University Press, Cambridge, 1988).CrossRefGoogle Scholar
[15]Raphael, D., ‘Commensurability and elementary equivalence of polycyclic groups’, Bull. Austral. Math. Soc. 53 (1996), 425439.CrossRefGoogle Scholar
[16]Raphael, D., Comparaison de propriétés modèle-théoriques et de propriétés algébriques des groupes polycycliques-par-finis, Doctoral dissertation (University Paris VII, Paris, 1996).Google Scholar
[17]Warfield, R.B. Jr, Nilpotent groups, Lecture Notes in Math. 513 (Springer-Verlag, Berlin, 1976).CrossRefGoogle Scholar