Hostname: page-component-5c6d5d7d68-sv6ng Total loading time: 0 Render date: 2024-08-15T12:59:47.386Z Has data issue: false hasContentIssue false

Elliptic problems in variable exponent spaces

Published online by Cambridge University Press:  17 April 2009

Mihai Mihailescu
Affiliation:
Department of Mathematics, University of Craiova, 200585 Craiova, Romania e-mail: mmihailes@yahoo.com
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study a nonlinear elliptic equation involving p(x)-growth conditions on a bounded domain having cylindrical symmetry. We establish existence and multiplicity results using as main tools the mountain pass theorem of Ambosetti and Rabinowitz and Ekeland's variational principle.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2006

References

[1]Acerbi, E. and Mingione, G., ‘Regularity results for a class of functionals with nonstandard growth’, Arch. Rational Mech. Anal. 156 (2001), 121140.Google Scholar
[2]Alves, C.O. and Souto, M.A.S., ‘Existence of solutions for a class of problems in ℝN involving the p(x)-Laplacian’, Progress Nonlinear Differential Equations Appl. 66 (2005), 1732.Google Scholar
[3]Ambrosetti, A. and Rabinowitz, P.H., ‘Dual variational methods in critical point theory’, J. Funct. Anal. 14 (1973), 349381.CrossRefGoogle Scholar
[4]Bahri, A. and Coron, J.M., ‘On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain’, Comm. Pure Appl. Math. 41 (1988), 253294.Google Scholar
[5]Brezis, H. and Nirenberg, L., ‘Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent’, Comm. Pure Appl. Math. 36 (1983), 437477.Google Scholar
[6]Chabrowski, J. and Fu, Y., ‘Existence of solutions for p(x)-Laplacian problems on bounded domains’, J. Math. Anal. Appl. 306 (2005), 716.CrossRefGoogle Scholar
[7]Diening, L., Theoretical and numerical results for electrorheological fluids, (Ph.D. thesis) (University of Frieburg, Germany, 2002).Google Scholar
[8]Edmunds, D.E., Lang, J., and Nekvinda, A., ‘On LP(x) norms’, Proc. Roy. Soc. London Ser. A 455 (1999), 219225.CrossRefGoogle Scholar
[9]Edmunds, D.E. and Rákosník, J., ‘Density of smooth functions in WK, P(x)(Ω)’, Proc. Roy. Soc. London Ser. A 437 (1992), 229236.Google Scholar
[10]Edmunds, D.E. and Rákosník, J., ‘Sobolev embedding with variable exponent’, Studia Math. 143 (2000), 267293.CrossRefGoogle Scholar
[11]Ekeland, I., ‘On the variational principle’, J. Math. Anal. App. 47 (1974), 324353.Google Scholar
[12]Fan, X.L. and Zhang, Q.H., ‘Existence of solutions for p(x)-Laplacian Dirichlet problem’, Nonlinear Anal. 52 (2003), 18431852.Google Scholar
[13]Halsey, T.C., ‘Electrorheological fluids’, Science 258 (1992), 761766.CrossRefGoogle ScholarPubMed
[14]Kovácik, O. and Rákosník, J., ‘On spaces Lp(x) and W 1,p(x)’, Czechoslovak Math. J. 41 (1991), 592618.Google Scholar
[15]Mihǎilescu, M. and Rǎdulescu, V., ‘A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids’, Proc. Roy. Soc. London Ser. A (doi:10.1098/rspa.2005.1633) (to appear).Google Scholar
[16]Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Mathematics 1034 (Springer-Verlag, Berlin, 1983).CrossRefGoogle Scholar
[17]Ruzicka, M., ‘Flow of shear dependent electrorheological fluids’, C. R. Acad. Sci. Paris Ser. I Math. 329 (1999), 393398.Google Scholar
[18]Ruzicka, M., Electrorheological fluids: Modeling and mathematical theory (Springer–Verlag, Berlin, 2002).Google Scholar
[19]Samko, S. and Vakulov, B., ‘Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators’, J. Math. Anal. Appl. 310 (2005), 229246.Google Scholar
[20]Wang, W., ‘Sobolev embeddings involving symmetry’, Bull. Sci. Math. (doi:10.1016/j.bulsci.2005.05.004) (to appear).Google Scholar
[21]Winslow, W.M., ‘Induced fibration of suspensions’, J. Appl. Phys. 20 (1949), 11371140.CrossRefGoogle Scholar
[22]Zhikov, V., ‘Averaging of functionals in the calculus of variations and elasticity’, Math. USSR Izv. 29 (1987), 3366.CrossRefGoogle Scholar