Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-11T15:37:22.696Z Has data issue: false hasContentIssue false

Optimality conditions for multiobjecttve and nonsmooth minimisation in abstract spaces

Published online by Cambridge University Press:  17 April 2009

L. Coladas
Affiliation:
Departamento de Estadística eInvestigación Operativa Universidadde Santiago de Compostela 15771 Santiago de CompostelaSpain
Z. Li
Affiliation:
Institute of Systems Science AcademiaSinica Beijing 100080China
S. Wang
Affiliation:
Department of MathematicsUniversity of Inner MongoliaHohhot 010021China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we study optimality conditions for an efficient solution in various senses of a general multiobjective optimisation problem in abstract spaces. We utilise properties of the Clarke's generalised differential and properties of a conesubconvexlike function to derive a few necessary and/or sufficient conditions for a feasible solution to be a weak minimum (a minimum, a strong minimum or a proper minimum) of the vector optimisation problem. The results in this paper are extensions and refinements of some known results in vector optimisation.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1994

References

[1]Barbu, V. and Precupanu, Th., Convexity and optimization in Banach spaces (Sijthoff and Noordhoff International Publishers, Holland, 1978).Google Scholar
[2]Borwein, J.M., ‘Proper efficient points for maximizations with respect to cones’, SIAM J. Control Optim. 15 (1977), 5763.CrossRefGoogle Scholar
[3]Clarke, F.H., Optimization and nonsmooth analysis (Wiley and Sons, New York, 1983).Google Scholar
[4]Craven, B.D., ‘Nondifferentiable optimization by smooth approximations’, Optimization 17 (1986), 317.CrossRefGoogle Scholar
[5]Jahn, T., ‘Scalarization in multiobjective optimization’, in Mathematics of Multiobjective Optimization, (Serafini, P., Editor) (Springer-Verlag, Berlin, Heidelberg, New York, 1985), pp. 4588.Google Scholar
[6]Jahn, J., Mathematical vector optimization in partially ordered linear spaces (Verlag Peter Lang, Frankfurt am Main, 1986).Google Scholar
[7]Jeyakumar, V., ‘A generalization of minimax theorem of Fan via a theorem of the alternative’, J. Optim. Theory Appl. 48 (1986), 525533.CrossRefGoogle Scholar
[8]Li, Z.M., ‘Generalized Kuhn-Tucker conditions of the vector extremum problem in the linear topological spaces’, J. Systems Sci. Math. Sci. 10 (1990), 7883.Google Scholar
[9]Luc, D.T., Theory of vector optimization (Springer-Verlag, Berlin, Heidelberg, New York, 1989).CrossRefGoogle Scholar
[10]Minami, M., ‘Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space’, J. Optim. Theory Appl. 41 (1983), 451461.CrossRefGoogle Scholar
[11]Pshenichnyi, B., Necessary conditions for an extremum (Marcel Dekker, New York, 1967).Google Scholar
[12]Sawaragi, Y., Nakayama, H. and Tanino, T., Theory of multiobjective optimization (Academic Press, New York, 1985).Google Scholar
[13]Swartz, C., ‘Pshenichnyi's theorem for vector minimization’, J. Optim. Theory Appl. 53 (1987), 309317.CrossRefGoogle Scholar
[14]Weir, T. and Jeyakumar, V., ‘A class of nonconvex functions and mathematical programming’, Bull Austral. Math. Soc. 38 (1988), 177189.CrossRefGoogle Scholar
[15]Yu, P.L., Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives J. Optim. Theory Appl. 14 (1974), 319377.CrossRefGoogle Scholar