Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-09-18T16:19:31.680Z Has data issue: false hasContentIssue false

Prediction of fractional Brownian motion with Hurst index less than 1/2

Published online by Cambridge University Press:  17 April 2009

V. V. Anh
Affiliation:
School of Mathematical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia e-mail: v.anh@qut.edu.au
A. Inoue
Affiliation:
Department of Mathematics, Faculty of Science, Hokkaido University, Sapporo 060–0810, Japan e-mail: inoue@math.sci.hokudai.ac.jp
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We give a proof based on an integral equation for an explicit prediction formula for fractional Brownian motion with Hurst index less than 1/2.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 2004

References

[1]Anh, V.V. and Inoue, A., ‘Prediction of fractional Brownian motion-type processes: the case 0 < H < 1/2’, (submitted).Google Scholar
[2]Carleman, T., ‘Über die Abelsche Intergralgleichung mit knostanten Integrations-grenzen’, Math. Z. 15 (1922), 111120.Google Scholar
[3] G. Gripenberg and I. Norros, ‘On the prediction of fractional Brownian motion’, J. Appl. Probab. 33 (1996), 400410.CrossRefGoogle Scholar
[4]Kolmogorov, A.N., ‘Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen raum’, Compres Rendus (Doklady) de l'Académie des Sciences de l'USSR (N.S.) 26 (1940), 115118.Google Scholar
[5]Lundgren, T. and Chiang, D., ‘Solution of a class of singular integral equations’, Quart. Appl. Math. 24 (1967), 303313.Google Scholar
[6]Mandelbrot, B.B. and Van Ness, J.W., ‘Fractional Brownian motions, fractional noises and applications’, SIAM Rev. 10 (1968), 422437.Google Scholar
[7]Norros, I., Valkeila, E., and Virtamo, J., ‘An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motions’, Bernoulli 5 (1999), 571587.Google Scholar
[8]Nuzman, C.J. and Poor, H.V., ‘Linear estimation of self-similar processes via Lamperti's transformation’, J. Appl. Probab. 37 (2000), 492–452.CrossRefGoogle Scholar
[9]Samorodnitsky, G. and Taqqu, M.S., Stable non-Gaussian random processes: stochastic models with infinite variance (Chapman and Hall, New York, 1994).Google Scholar
[10]Yaglom, A.M., ‘Correlation theory of processes with random stationary nth increments’, (Russian), Mat, Sb. N.S. 37 (1955), 141196. English translation: Amer. Math. Soc. Trans. Ser. (2) 8 (1958), 87–141.Google Scholar