Hostname: page-component-5c6d5d7d68-lvtdw Total loading time: 0 Render date: 2024-08-15T23:28:20.399Z Has data issue: false hasContentIssue false

Some nilpotent Lie algebras of even dimension

Published online by Cambridge University Press:  17 April 2009

Craig Seeley
Affiliation:
Department of Mathematics IAS ANU GPO Box 4 Canberra ACT 2601, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For each even dimension greater than or equal to 8, an infinite family of 3-step nilpotent Lie algebras over ℂ is constructed. In dimension m, the family contains isomorphism classes parameterised locally by approximately m3/48 essential parameters.

One particular case is studied further to get some global information about the variety of all nilpotent Lie algebras of dimension 8. Using the results obtained here, and some known facts, it is shown that there is a component consisting of algebras not having minimal possible central dimensions.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1992

References

[1]Ancochea-Bermudez, J.M. and Goze, J., ‘Classification des algèbres de Lie nilpotentes complexes de dimension 7’, Arch. Math. 52 (1989), 175185.CrossRefGoogle Scholar
[2]Carles, R., Variétés d'algèbra de Lie: point de vue global et rigidité, Ph.D. Thesis (University of Poitiers, Prance, 1984).Google Scholar
[3]Chao, C., ‘Uncountably many non-isomorphic nilpotent Lie algebras’, Proc. Amer. Math. Soc. 13 (1962), 903906.CrossRefGoogle Scholar
[4]Grunewald, F. and O'Halloran, J., ‘Varieties of Lie algebras of dimensions less than six’, J. Algebra 112 (1988), 315325.CrossRefGoogle Scholar
[5]Higman, G., ‘Enumerating p−groups, I’, Proc. London Math. Soc. 10 (1960), 2430.CrossRefGoogle Scholar
[6]Magnin, L., ‘Sur les alg'ebres de Lie nilpotentes de dimension ≤ 7’, J. Geom. Phys. 3 (1986), 119144.CrossRefGoogle Scholar
[7]Morozov, V., ‘Classification of nilpotent Lie algebras of 6th order’, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (1958), 161171.Google Scholar
[8]Newman, M.F. and Seeley, C., ‘Modality in the variety of nilpotent Lie algebras’, (in preparation).Google Scholar
[9]Romdhani, M., ‘Classification of real and complex nilpotent Lie algebras of dimension 7’, Linear and Multilinear Algebra 24 (1989), 167189.CrossRefGoogle Scholar
[10]Safiullina, E., ‘Classification of nilpotent Lie algebras of order 7’, Candidates Works, Math. Mech. Phys. 64, 6669. Ph.D. Thesis (Izdat. Kazan Univ., Kazan, 1964).Google Scholar
[11]Santharoubane, L., ‘Infinite families of nilpotent Lie algebras’, J. Math. Soc. Japan 35 (1983), 515519.CrossRefGoogle Scholar
[12]Seeley, C., ‘Degenerations of central quotients’, Arch. Math. 56 (1991), 236241.CrossRefGoogle Scholar
[13]Seeley, C., Seven-dimensional nilpotent Lie algebras over the complex numbers, Ph.D. Thesis (University of Illinois, Chicago, 1988).Google Scholar
[14]Seeley, C., ‘Degenerations of 6-dimensional nilpotent Lie algebras’, Comm. Algebra 18 (1990), 34933505.Google Scholar
[15]Seeley, C. and Yau, S.S.-T., ‘Variation of complex structures and variation of Lie algebras’, Invent. Math. (1990), 545565.CrossRefGoogle Scholar
[16]Sims, C., ‘Enumerating p-groups’, Proc. London Math. Soc. 15 (1965), 151166.CrossRefGoogle Scholar
[17]Umlauf, K., Uber die Zusammensetzung der endlichen continuierlichen Transformations-gruppen insbesondere der Gruppen vom Range Null, Ph.D. Thesis (University of Leipzig, Germany, 1891).Google Scholar
[18]Vergne, M., Variétés des algèbres de Lie nilpotente, Thèse (Fac. Sci. de Paris, Paris, 1966).Google Scholar