Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T19:36:15.209Z Has data issue: false hasContentIssue false

BIOSYSTEMATICS OF THE GENUS EUXOA (LEPIDOPTERA: NOCTUIDAE): XVI. COMPARATIVE BIOLOGY AND EXPERIMENTAL TAXONOMY OF FOUR SUBSPECIES OF EUXOA COMOSA

Published online by Cambridge University Press:  31 May 2012

J. R. Byers
Affiliation:
Biosystematics Research Institute, Agriculture Canada, Ottawa K1A 0C6
J. D. Lafontaine
Affiliation:
Biosystematics Research Institute, Agriculture Canada, Ottawa K1A 0C6

Abstract

Laboratory and experimental studies of four of the five subspecies of Euxoa comosa (Morr.), i.e. annir, altera, lutulenta and Ontario, each formerly considered of specific rank, were undertaken to assess their taxonomic status. Morphologically the immature stages of the subspecies are similar although lutulenta has a 40–50% larger egg and the larvae of lutulenta and Ontario are darker than those of annir and altera. The subspecies show differentiation in larval growth rate, number of larval instars, duration of preimaginal development and length of the preoviposition period. The possible adaptive significance of these differences are discussed. Hybrid F1 were obtained from 11 of the 12 possible pairwise combinations. Eight of the F1 hybrids were inbred and six produced fertile eggs. Some of the F2 progenies exhibited a wide range of phenotypes encompassing all subspecies including those of the 5th subspecies, E. c. comosa. Although hybridization success was high there was some evidence of genetic incompatibility including dyssynchronous emergence of the sexes and the absence, shortage, or inviability of female moths in some crosses. Mating discrimination tests show a moderate level of mating bias between subspecies. Calling periods of females of the subspecies largely overlap although differences in the time at which calling begins might be responsible for some of the mating bias. Both laboratory and field tests of sex pheromone attraction indicate considerable sex pheromone specificity among the subspecies. The results are discussed with reference to a companion paper which on the basis of conventional taxonomic characters and biogeographic considerations concludes that Euxoa comosa is best regarded as a polytypic species encompassing five subspecies.

Résumé

Des études de laboratoire et de terrain de quatre des cinq sous-espèces de Euxoa comosa (Morr.), soit annir, altera, lutulenta et ontario chacune considérée autrefois comme espèce distincte, ont été menées pour évaluer leur position taxonomique. Morphologiquement, les stades immatures des sous-espèces sont semblables, bien que les oeufs de lutulenta soient 40 à 50% plus gros et que les larves de lutulenta et de ontario soient plus foncées que celles de annir et altera. Les sous-espèces affichent une différenciation du taux de croissance larvaire, du nombre de stades larvaires, de la durée du développement préimaginai et de la période de preoviposition. L'auteur étudie la signification éventuelle de ces différences sur le plan de l'adaptation. Onze des 12 combinaisons possibles par paires ont donné des hybrides F1. Huit des hybrides étaient consangins et six sont produit des oeufs fertiles. Une partie de la descendance F2 manifeste une grande diversité de phénotypes englobant toutes les sous-espèces, y compris ceux de la 5e sous-espèce, E. c. comosa. Bien que la réussite de l'hybridation ait été concluante, on note une quelconque incompatibilité génétique chez certains croisements, comme en témoignent l'émergence asynchrone des sexes et l'absence, la pénurie ou l'inviabilité des adultes femelles. Des essais discriminatoires d'appariement révèlent un taux modéré d'erreurs d'accouplement entre les sousespèces. Les périodes d'attraction sexuelle des femelles des sous-espèces chevauchent largement, encore que certaines différences chronologiques dans le début des périodes pourraient expliquer une partie des erreurs d'accouplement. Des essais de laboratoire et de terrain sur le pouvoir attractif des phéromones sexuelles révèlent la présence d'une grande spécificité de celles-ci entre les sous-espèces. Les résultats sont analysés en regard d'un article complémentaire qui, d'après certains caractères taxonomiques typiques et considérations biogéographiques, conclut que Euxoa comosa est au mieux considérée comme une espèce polytypique comportant cinq sous-espèces.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beck, H. 1960. Die Larvalsystematik der Eulen (Noctuidae). Akademie-Verlag, Berlin. 406 pp.Google Scholar
Bowden, S. R. 1976. Breeding experiments and taxonomy. Ent. Gaz. 27: 512.Google Scholar
Bush, G. L. 1975. Modes of animal speciation. Ann. Rev. Ecol. System. 6: 339364.CrossRefGoogle Scholar
Byers, J. R., Hinks, C. F., and Lafontaine, J. D.. 1975. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). II. A description of the immature stages of Euxoa basalis and a redescription of the adult. Can. Ent. 107: 10831094.CrossRefGoogle Scholar
Byers, J. R. and Hinks, C. F.. 1978. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). XI. Mating discrimination between three closely related species of the declarata group. Can. J. Zool. 56: 19811987.CrossRefGoogle Scholar
Byers, J. R., Underhill, E. W., Steck, W. F., Chisholm, M. D., and Teal, P. E. A.. 1981. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). XV. Sex pheromone cross-attractancy among the three closely related species of the declarata group. Can. Ent. 113: 235243.CrossRefGoogle Scholar
Cockayne, E. A. 1940. Hybrids. Proc. Trans. South Lond. Ent. Nat. Hist. Soc. 1939-40: 6580.Google Scholar
Cook, W. C. 1927. Studies in the ecology of Montana cutworms (Phalaenidae). Ecology 8: 158173.Google Scholar
Crumb, S. E. 1956. The larvae of the Phalaenidae. Tech. Bull. U.S. Dep. Agric. 1135. 356 pp.Google Scholar
Druzhelyubova, T. S. 1976. Temperature and light as factors affecting development and behavior in geographic populations of Agrotis ypsilon Rott. (Lepidoptera, Noctuidae). Ent. Rev. 55(2): 914.Google Scholar
Ehrlich, P. R. and Raven, P. H.. 1969. Differentiation of populations. Science 165: 12281232.CrossRefGoogle ScholarPubMed
Endler, J. A. 1977. Geographic variation, speciation and clines. Princeton University Press, Princeton, N.J.Google ScholarPubMed
Fytizas, E. and Mourikis, P.A.. 1979. Some aspects of the action of a juvenoid on the growth of Heliothis armigera Hbn. (Lepidoptera: Noctuidae). 1. Body weight, feeding and utilization of food. Z. angew. Ent. 88: 542547.CrossRefGoogle Scholar
Haldane, J. B. S. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12: 101109.CrossRefGoogle Scholar
Hertwig, P. 1936. Artbastarde bei Tieren. Handb. Vererbungsw. 2. 140 pp.Google Scholar
Hinks, C. F. and Byers, J. R.. 1973. Characters for determining the sex of cutworms and other noctuid larvae (Lepidoptera: Noctuidae). Can. J. Zool. 51: 12351241.CrossRefGoogle Scholar
Hinks, C. F. and Byers, J. R.. 1976. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). V. Rearing procedures, and life cycle of 36 species. Can. Ent. 108: 13451357.CrossRefGoogle Scholar
Hovanitz, W. 1941. Parallel ecogenotypical color variation in butterflies. Ecology 22: 259284.CrossRefGoogle Scholar
Howell, J. F., Hutt, R. B. and Hill, W. B.. 1978. Codling moth: mating behavior in the laboratory. Ann. ent. Soc. Am. 71: 891895.CrossRefGoogle Scholar
Iwao, S. 1967. Insect population quality and meteorological conditions. Int. J. Biometeor. 11: 3337.CrossRefGoogle Scholar
Jacobson, L. A. 1960. Influence of photoperiod on oviposition by the army cutworm, Chorizagrotis auxiliaris (Lepidoptera: Noctuidae), in an insectary. Ann. ent. Soc. Am. 53: 474475.CrossRefGoogle Scholar
Kennedy, J. S. 1975. Insect dispersal. pp. 103119in Pimentel, D. (Ed.), Insects, Science and Society. Academic Press.CrossRefGoogle Scholar
Klun, J. A. and cooperators. 1975. Insect sex pheromones: intraspecific pheromonal variability of Ostrinia nubilalis in North America and Europe. Environ. Ent. 4: 891894.CrossRefGoogle Scholar
Lafontaine, J. D. and Byers, J. R.. 1982. A revision of the comosa group of the genus Euxoa Hbn. (Lepidoptera: Noctuidae), with descriptions of two new species. Can. Ent. 114: 575589CrossRefGoogle Scholar
Miller, J. R. and Roelofs, W. L.. 1980. Individual variation in sex pheromone components ratios in two populations of the redbanded leafroller moth, Argyrotaenia velutinana. Environ. Ent. 9: 359363.CrossRefGoogle Scholar
Milyanovskiy, Y. S. 1973. Differences in the development of Lepidoptera in the coastal and mountain regions of Abkhazia. Ent. Rev. 52: 469470.Google Scholar
Oliver, C. G. 1972. Genetic and phenotypic differentiation and geographic distance in four species of Lepidoptera. Evolution 26: 221241.CrossRefGoogle ScholarPubMed
Oliver, C. G. 1979. Genetic differentiation and hybrid viability within and between some Lepidoptera species. Am. Nat. 114: 681694.CrossRefGoogle Scholar
Persson, B. 1972. Longevity of noctuid moths in relation to certain daytime weather factors. Oikos 23: 394400.CrossRefGoogle Scholar
Poitout, S. and Bues, R.. 1977. Quelques aspects génétiques de l'hétérogénéité de manifestion de la diapause estivale dans les populations européennes de deux Lépidoptères, Noctuidae, Hadeninae (Mamestra oleracea L. et Mamestra brassicae L.). Ann. Zool. Ecol. Anim. 9: 235259.Google Scholar
Priesner, E. 1979. Progress in the analysis of pheromone receptor systems. Ann. Zool. Ecol. Anim. 11: 533546.Google Scholar
Roelofs, W. L. 1977. The scope and limitations of the electroantennogram technique in identifying pheromone components. pp. 147165in McFarlane, N. R. (Ed.), Crop Protection Agents — Their Biological Evaluation. Academic Press.Google Scholar
Roelofs, W. L. and Card, R. T.é. 1974. Sex pheromone in the reproductive isolation of lepidopterous species. pp. 96114in Birch, M. C. (Ed.), Pheromones. Elsevier, New York.Google Scholar
Ryabov, M. A. 1956. Types of annual life cycles in cutworms. (In Russian.) Ent. Obozr. 25: 6979.Google Scholar
Salkeld, E. H. 1975. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). IV. Eggs of the subgenus Euxoa Hbn. Can. Ent. 107: 11371152.CrossRefGoogle Scholar
Salkeld, E. H. 1976. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). VII. Eggs of the subgenera Chorizagrotis, Crassivesica, Longivesica, Orosagrotis, and Pleonectopoda. Can. Ent. 108: 13711385.CrossRefGoogle Scholar
Salkeld, E. H. 1977. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). IX. Morphological and electrophoretic characteristics of the eggs of the “declarata group”. Can. Ent. 109: 11371144.CrossRefGoogle Scholar
Sehnal, F., Metwally, M. M., and Gelbic, I.. 1976. Reactions of immature stages of noctuid moths to juvenoids. Z. angew. Ent. 81: 85102.CrossRefGoogle Scholar
Teal, P. E. A., Byers, J. R., and Philogène, B. J. R.. 1978. Differences in female calling behavior of three interfertile sibling species of Euxoa (Lepidoptera: Noctuidae). Ann. ent. Soc. Am. 71: 630634.CrossRefGoogle Scholar
Teal, P. E. A. and Byers, J. R.. 1980. Biosystematics of the genus Euxoa (Lepidoptera: Noctuidae). XIV. Effect of temperature on female calling behavior and temporal partitioning in three sibling species of the declarata group. Can. Ent. 112: 113117.CrossRefGoogle Scholar
Udovic, D. 1980. Frequency-dependent selection, disruptive selection, and the evolution of reproductive isolation. Am. Nat. 116: 621641.CrossRefGoogle Scholar
Wasserman, M. and Koepfer, H. R.. 1977. Character displacement for sexual isolation between Drosophila mojavensis and Drosophila arizonensis. Evolution 31: 812823.CrossRefGoogle ScholarPubMed
Wigglesworth, V. B. 1972. The Principles of Insect Physiology, 7th ed. Chapman and Hall, London.CrossRefGoogle Scholar