Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T08:38:19.765Z Has data issue: false hasContentIssue false

CAN JUVENILE HORMONE RESEARCH HELP REJUVENATE INTEGRATED PEST MANAGEMENT?

Published online by Cambridge University Press:  31 May 2012

Michel Cusson*
Affiliation:
Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 3800, Sainte-Foy, Québec, Canada G1V 4C7
Subba Reddy Palli
Affiliation:
Rohm and Haas Company, 727 Norristown Road, P.O. Box 904, Spring House, Pennsylvania, USA 19477-0904
*
1 Author to whom all corresponding should be addressed (E-mail: cusson@cfl.forestry.ca).

Abstract

In the 1960s, the prediction that synthetic juvenile hormones (JHs) and their analogs would form the basis of a new generation of insecticides with enhanced target specificity greatly stimulated research on this hormone. Although JH-based insecticides were found to be effective against certain groups of insect pests, their shortcomings soon became apparent; however, current JH research provides new opportunities and ideas for the development of innovative integrated pest management (IPM) tools and strategies aimed at disrupting JH functions. Interfering with JH endocrinology requires that we either artificially increase JH titers at stages of development when titers are normally low or artificially reduce JH titers at stages of development when titers are normally high. Our discussion is organized around these two conceptual approaches and covers such areas as (i) the isolation and cloning of JH receptors; (ii) the characterization of polydnavirus and entomopoxvirus gene products responsible for the inhibition of host metamorphosis; (iii) the isolation and molecular cloning of allatostatins and the design of allatostatic pseudopeptides; (iv) the characterization of JH biosynthetic enzymes specific to the Lepidoptera; (v) the characterization of regulatory material originating from parasitic wasps of the genus Chelonus Panzer (Hymenoptera: Braconidae), which induce precocious metamorphosis in their hosts; (vi) a tree resistance mechanism involving anti-JH effects resulting in the failure of female insects to produce and lay eggs; and (vii) the cloning of JH esterase and epoxide hydrolase cDNAs and the production of recombinant baculoviruses that overexpress these JH-degradative enzymes.

Résumé

La recherche sur les hormones juvéniles (JH) a été grandement stimulée par la prédiction, dans les années 60, que des analogues synthétiques de cette hormone allaient former la base d’une nouvelle génération d’insecticides à spécificité améliorée. Bien que ces produits se soient révélés efficaces contre certains groupes d’insectes, leur succès n’a pas été aussi spectaculaire qu’on l’aurait souhaité. Toutefois, des façons innovatrices d’envisager la perturbation des fonctions de la JH laissent maintenant présager l’émergence de nouveaux outils pour la gestion intégrée des ravageurs. La perturbation des fonctions de la JH requiert l’une ou l’autre des deux conditions suivantes : une augmentation artificielle des titres de JH à un stade de développement où ces titres sont normalement faibles, ou une diminution artificielle des titres de JH à un stade de développement où ces titres sont normalement élevés. Notre discussion s’articule autour de ces deux approches conceptuelles et traite de sujets tels que : (i) l’isolation et le clonage du récepteur de la JH; (ii) la caractérisation de protéines encodées par des gènes de polydnavirus et d’entomopoxvirus qui inhibent la métamorphose; (iii) l’isolation et le clonage des allatostatines et l’élaboration de pseudopeptides allatostatiques pouvant être utilisés comme insecticides; (iv) la caractérisation d’enzymes de la voie biosynthétique de la JH spécifiques aux Lépidoptères; (v) la caractérisation des substances transmises par des guêpes endoparasitoïdes du genre Chelonus Panzer (Hymenoptera : Braconidae) à leurs hôtes, chez lesquels elles induisent une métamorphose précoce; (vi) l’étude d’un mécanisme de résistance des arbres impliquant un effet anti-JH qui se traduit par l’incapacité des femelles à produire et à pondre des œufs; et (vii) le clonage des gènes de l’estérase et de l’époxide hydrolase de la JH, et la construction de baculovirus recombinants qui produisent de grandes quantités de ces enzymes qui dégradent la JH.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anspaugh, D.D., Harris, S.V., Thompson, D.M., Tomalski, M.D., Linderman, R.J., Roe, R.M. 1999. Cloning and characterization of two epoxide hydrolase genes from the cabbage looper, Trichoplusia ni. Proceedings of the 7th International Conference on Juvenile Hormones, Jerusalem, Israel, Book of abstractsGoogle Scholar
Ashok, M., Turner, C., Wilson, T.G. 1998. Insect juvenile hormone resistance gene homology with the bHLH-PAS family of transcriptional regulators. Proceedings of the National Academy of Sciences USA 95: 2761–6CrossRefGoogle ScholarPubMed
Bede, J.C., Tobe, S.S. 1999. Insect juvenile hormones in plants. pp. 369418in Rahman, A.U. (Ed.), Studies in natural product chemistry. Vol. 24. Amsterdam: Elsevier PressGoogle Scholar
Béliveau, C., Laforge, M., Cusson, M., Bellemare, G. 2000. Expression of a Tranosema rostrale polydnavirus gene in the spruce budworm, Choristoneura fumiferana. Journal of General Virology. In pressGoogle ScholarPubMed
Bellés, X., Maestro, J.L., Piulachs, M.D., Johnsen, A.H., Duve, H., Thorpe, A. 1994. Allatostatic neuropeptides from the cockroach Blattella germanica (L.) (Dictyoptera, Blattellidae). Identification, immunolocalization and activity. Regulatory Peptides 53: 237–47CrossRefGoogle ScholarPubMed
Bendena, W.G., Garside, C.S., Yu, C.G., Tobe, S.S. 1997. Allatostatins: diversity in structure and function of an insect neuropeptide family. Annals of the New York Academy of Science 814: 5366CrossRefGoogle ScholarPubMed
Bhaskaran, G., Dahm, K.H., Barrera, P., Pacheco, J.L., Peck, K.E., Musynska-Pytel, M. 1990. Allatinhibin, a neurohormonal inhibitor of juvenile hormone biosynthesis in Manduca sexta. General and Comparative Endocrinology 78: 123–36CrossRefGoogle ScholarPubMed
Bonning, B.C., Hoover, K., Booth, T.F., Duffey, S., Hammock, B.D. 1995. Development of a recombinant baculovirus expressing a modified juvenile hormone esterase with potential for insect control. Archives of Insect Biochemistry and Physiology 30: 177–94CrossRefGoogle Scholar
Bowers, W.S. 1976. Discovery of insect antiallatotropins. pp. 394408in Gilbert, L.I. (Ed.), The juvenile hormones. New York: Plenum PressCrossRefGoogle ScholarPubMed
Bowers, W.S., Unnithan, G.C., Fukushima, J-i, Toda, J., Sugiyama, T. 1995. Synthesis and biological activity of furanyl anti-juvenile hormonal compounds. Pesticide Science 43: 111CrossRefGoogle Scholar
Braun, R.P., Wyatt, G.R. 1995. Growth of the male accessory gland in adult locusts: roles of juvenile hormone, JH esterase, and JH binding proteins. Archives of Insect Biochemistry and Physiology 30: 383400CrossRefGoogle Scholar
Brindle, P.A., Baker, F.C., Tsai, L.W., Reuter, C.C., Schooley, D.A. 1987. Sources of propionate for the biogenesis of ethyl-branched insect juvenile hormones: role of isoleucine and valine. Proceedings of the National Academy of Sciences USA 84: 7906–10CrossRefGoogle ScholarPubMed
Brindle, P.A., Baker, F.C., Tsai, L.W., Schooley, D.A. 1992. Comparative metabolism of isoleucine by corpora allata of nonlepidopteran insects versus lepidopteran insects, in relation to juvenile hormone biosynthesis. Archives of Insect Biochemistry and Physiology 19: 115CrossRefGoogle Scholar
Castillo-Gracia, M., Couillaud, F. 1999. Molecular cloning and tissue expression of an insect farnesyl diphosphate synthase. European Journal of Biochemistry 262: 365–70CrossRefGoogle ScholarPubMed
Charles, J-P, Wojtasek, H., Letz, A.J., Thomas, B.A., Bonning, B.C., Palli, S.R., Parker, A.G., Gorman, G., Hammock, B.D., Prestwich, G.D., Riddiford, L.M. 1996. Purification and reassessment of ligand binding by the recombinant, putative juvenile hormone receptor of the tobacco hornworm, Manduca sexta. Archives of Insect Biochemistry and Physiology 31: 371–933.0.CO;2-Z>CrossRefGoogle Scholar
Cusson, M., McNeil, J.N. 1989. Involvement of juvenile hormone in the regulation of pheromone release activities in a moth. Science (Washington, D.C.) 243: 210–12CrossRefGoogle Scholar
Cusson, M., Prestwich, G.D., Stay, B., Tobe, S.S. 1991 a. Photoaffinity labeling of allatostatin receptor proteins in the corpora allata of the cockroach, Diploptera punctata. Biochemical and Biophysical Research Communications 181: 736–42CrossRefGoogle ScholarPubMed
Cusson, M., Yagi, K., Ding, Q., Duve, H., Thorpe, A., McNeil, J.N., Tobe, S.S. 1991 b. Biosynthesis and release of juvenile hormone and its precursors in insects and crustaceans: the search for a unifying arthropod endocrinology. Insect Biochemistry 21: 16CrossRefGoogle Scholar
Cusson, M., Le Page, A., McNeil, J.N., Tobe, S.S. 1996. Rate of isoleucine metabolism in lepidopteran corpora allata: regulation of the proportion of juvenile hormone homologues released. Insect Biochemistry and Molecular Biology 26: 195201CrossRefGoogle Scholar
Cusson, M., Laforge, M., Miller, D., Cloutier, C., Stoltz, D. 2000. Functional significance of parasitism-induced suppression of juvenile hormone esterase activity in developmentally delayed Choristoneura fumiferana larvae. General and Comparative Endocrinology 117: 343–54CrossRefGoogle ScholarPubMed
Darrouzet, E., Mauchamp, B., Prestwich, G.D., Kerhoas, L., Ujváry, I., Couillaud, F. 1997. Hydroxy juvenile hormones: new putative juvenile hormones biosynthesized by locust corpora allata in vitro. Biochemical and Biophysical Research Communications 240: 752–8CrossRefGoogle ScholarPubMed
Darrouzet, E., Rossignol, F., Couillaud, F. 1998. The release of isoprenoids by locust corpora allata in vitro. Journal of Insect Physiology 44: 103–11CrossRefGoogle Scholar
Davey, K.G., Gordon, D.R.B. 1996. Fenoxycarb and thyroid hormones have JH-like effects on the follicle cells of Locusta migratoria in vitro. Archives of Insect Biochemistry and Physiology 32: 613–223.0.CO;2-D>CrossRefGoogle ScholarPubMed
de Kort, C.A.D., Granger, N.A. 1996. Regulation of JH titers: the relevance of degradative enzymes and binding proteins. Archives of Insect Biochemistry and Physiology 33: 1263.0.CO;2-2>CrossRefGoogle Scholar
Dhadialla, T.S., Carlson, G.R., Le, D.P. 1998. New insecticides with ecdysteroidal and juvenile hormone activity. Annual Review of Entomology 43: 545–69CrossRefGoogle ScholarPubMed
Ding, Q., Donly, B.C., Tobe, S.S., Bendena, W.G. 1995. Comparison of the allatostatin neuropeptide precursors in the distantly related cockroaches Periplaneta americana and Diploptera punctata. European Journal of Biochemistry 234: 737–46CrossRefGoogle ScholarPubMed
Donly, B.C., Ding, Q., Tobe, S.S., Bendena, W.G. 1993. Molecular cloning of the gene for the allatostatin family of neuropeptides from the cockroach Diploptera punctata. Proceedings of the National Academy of Sciences USA 90: 8807–11CrossRefGoogle ScholarPubMed
Engelmann, F. 1995. The juvenile hormone receptor of the cockroach Leucophaea maderae. Insect Biochemistry and Molecular Biology 25: 721–6CrossRefGoogle ScholarPubMed
Enslee, E.C., Riddiford, L.M. 1977. Morphological effects of juvenile hormone mimics on embryonic development in the bug, Pyrrhocoris apterus. Roux's Archives of Developmental Biology 181: 163–81CrossRefGoogle ScholarPubMed
Evans, R.M. 1988. The steroid and thyroid hormone receptor superfamily. Science (Washington, D.C.) 240: 385–97CrossRefGoogle ScholarPubMed
Feng, Q.L., Ladd, T.R., Tomkins, B.L., Sundaram, M., Sohi, S.S., Retnakaran, A., Davey, K.G., Palli, S.R. 1999. Spruce budworm (Choristoneura fumiferana) juvenile hormone esterase: hormonal regulation, developmental expression and cDNA cloning. Molecular and Cellular Endocrinology 148: 95108CrossRefGoogle ScholarPubMed
Feyereisen, R. 1998. Juvenile hormone resistance: ¡ no PASaran ! Proceedings of the National Academy of Sciences USA 95: 2725–6CrossRefGoogle ScholarPubMed
Feyereisen, R., Farnsworth, D.E. 1988. Forced synthesis of trace amounts of juvenile hormone II from propionate by corpora allata of a juvenile hormone III-producing insect. Experientia 44: 47–9CrossRefGoogle ScholarPubMed
Forman, B.M., Goode, E., Chen, J., Oro, A.E., Bradley, D.J., Perlmann, T., Noonan, D.J., Burka, L.T., McMorris, T., Lamph, W.W., Evans, R.M., Weinberger, C. 1995. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81: 687–93CrossRefGoogle ScholarPubMed
Garside, C.S., Hayes, T.K., Tobe, S.S. 1997. Inactivation of Dip-allatostatin 5 by membrane preparations from the cockroach Diploptera punctata. General and Comparative Endocrinology 108: 258–70CrossRefGoogle ScholarPubMed
Glinka, A.V., Wyatt, G.R. 1996. Juvenile hormone activation of gene transcription in the locust fat body. Insect Biochemistry and Molecular Biology 26: 1318CrossRefGoogle Scholar
Goodman, W.G. 1990. Biosynthesis, titer, regulation and transport of juvenile hormones. pp. 83124in Gupta, A.P. (Ed.), Morphogenetic hormones of arthropods. New Brunswick: Rutgers University PressGoogle Scholar
Hall, B.L., Thummel, C.S. 1998. The RXR homolog ultraspiracle is an essential component of the Drosophila ecdysone receptor. Development 125: 4709–17CrossRefGoogle ScholarPubMed
Hammock, B.D. 1985. Regulation of juvenile hormone titer: degradation. pp. 431–72 in Kerkut, G.A. and Gilbert, L.I. (Eds.), Comprehensive insect physiology, biochemistry and pharmacology. Vol. 7. Oxford: Pergamon PressGoogle Scholar
Hammock, B.D., Bonning, B.C., Possee, R.D., Hanzlik, T.N., Maeda, S. 1990. Expression and effects of the juvenile hormone esterase in a baculovirus vector. Nature (London) 344: 458–61CrossRefGoogle Scholar
Hammock, B.D., McCutchen, B.F., Beetham, J., Choudary, P.V., Fowler, E., Ichinose, R., Ward, V.K., Vickers, J.M., Bonning, B.C., Harshman, L.G., Grant, D., Uematsu, T., Maeda, S. 1993. Development of recombinant viral insecticides by expression of an insect-specific toxin and insect-specific enzyme in nuclear polyhedrosis viruses. Archives of Insect Biochemistry and Physiology 22: 315–44CrossRefGoogle ScholarPubMed
Hanzlik, T.N., Abdel-Aal, Y.A.I., Harshman, L.G., Hammock, B.D. 1989. Isolation and sequencing of cDNA clones coding for juvenile hormone esterase from Heliothis virescens. Journal of Biological Chemistry 264: 12 419–25CrossRefGoogle ScholarPubMed
Harmon, M.A., Boehm, M.F., Heyman, R.A., Mangelsdorf, D.J. 1995. Activation of mammalian retinoid X receptors by the insect growth regulator methoprene. Proceedings of the National Academy of Sciences USA 92: 6157–60CrossRefGoogle ScholarPubMed
Harris, S.V., Thompson, D.M., Linderman, R.J., Tomalski, M.D., Roe, R.M. 1999. Cloning and expression of a novel juvenile hormone-metabolizing epoxide hydrolase during larval-pupal metamorphosis of the cabbage looper, Trichoplusia ni. Insect Molecular Biology 8: 8596CrossRefGoogle Scholar
Hiruma, K., Shinoda, T., Malone, F., Riddiford, L.M. 1999. Juvenile hormone modulates 20-hydroxyecdysone-inducible ecdysone receptor and ultraspiracle gene expression in the tobacco hornworm, Manduca sexta. Development, Genes and Evolution 209: 1830CrossRefGoogle ScholarPubMed
Jansons, I.S., Cusson, M., McNeil, J.N., Tobe, S.S., Bendena, W.G. 1996. Molecular characterization of a cDNA from Pseudaletia unipuncta encoding the Manduca sexta allatostatin peptide (Mas-AST). Insect Biochemistry and Molecular Biology 26: 767–73CrossRefGoogle ScholarPubMed
Jones, D. 1996. Biochemical interaction between chelonine wasps and their lepidopteran hosts: after a decade of research — the parasite is in control. Insect Biochemistry and Molecular Biology 26: 981–96CrossRefGoogle Scholar
Jones, D., Wache, S. 1998. Preultimate 4th/5th instar Trichoplusia ni naturally-injected with venom/calyx fluid from Chelonus curvimaculatus precociously metamorphose, rather than obey the metamorphic size threshold that would normally compel molting to a 5th/6th instar. Journal of Insect Physiology 44: 755–65CrossRefGoogle Scholar
Jones, G., Sharp, P.A. 1997. Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proceedings of the National Academy of Sciences USA 94: 13499–503CrossRefGoogle ScholarPubMed
Jones, G., Manczak, M., Schelling, D., Turner, H., Jones, D. 1998. Transcription of the juvenile hormone esterase gene under the control of both an initiator and AT-rich motif. Biochemical Journal 335: 7984CrossRefGoogle ScholarPubMed
Kotaki, T. 1996. Evidence for a new juvenile hormone in a stink bug, Plautia stali. Journal of Insect Physiology 42: 279–86CrossRefGoogle Scholar
Kotaki, T. 1997. A putative juvenile hormone in the stink bug, Plautia stali: the corpus allatum produces and releases a JH-active product different from any known JHs in vitro. Invertebrate Reproduction and Development 31: 225–30CrossRefGoogle Scholar
Kramer, S.J., Toschi, A., Miller, C.A., Kataoka, H., Quistad, G.B., Li, J.P., Carney, R.L., Schooley, D.L. 1991. Identification of an allatostatin from the tobacco hornworm, Manduca sexta. Proceedings of the National Academy of Sciences USA 88: 9458–62CrossRefGoogle ScholarPubMed
Leal, I., White, E.E., Sahota, T.S., Manville, J.F. 1997. Differential expression of the vitellogenin gene in the spruce terminal weevil feeding on resistant versus susceptible host trees. Insect Biochemistry and Molecular Biology 27: 569–75CrossRefGoogle ScholarPubMed
Leid, M., Kastner, P., Chambon, P. 1992. Multiplicity generates diversity in the retinoic acid signalling pathways. Trends in Biochemical Sciences 17: 427–33CrossRefGoogle ScholarPubMed
Li, X., Webb, B.A. 1994. Apparent functional role for a cysteine-rich polydnavirus protein in suppression of the insect cellular immune response. Journal of Virology 68: 7482–9CrossRefGoogle ScholarPubMed
Linderman, R.J., Roe, R.M., Walker, E., Harris, S.V., Thompson, D.M., Tomalski, M.D. 1999. Analysis of the mechanism of insect epoxide hydrolase from molecular biology to the synthesis of inhibitors. Proceedings of the 7th International Conference on Juvenile Hormones, Jerusalem, Israel, Book of abstractsGoogle Scholar
Loher, W., Huber, F. 1966. Nervous and endocrine control of sexual behavior in a grasshopper (Gomphocerus rufus L., Acridinae). Society for Experimental Biology Symposia 20: 381400Google Scholar
Loher, W., Schooley, D.A., Baker, F.C. 1987. Influence of the ovaries on JH titer in Teleogryllus commodus. Insect Biochemistry 17: 1099–102CrossRefGoogle Scholar
Lorenz, M.W., Kellner, R., Hoffmann, K.H. 1995. Identification of two allatostatins from the cricket, Gryllus bimaculatus de Geer (Ensifera, Gryllidae): additional members of a family of neuropeptides inhibiting juvenile hormone biosynthesis. Regulatory Peptides 57: 227–36CrossRefGoogle Scholar
Makishima, M., Okamoto, A.Y., Repa, J.J., Tu, H., Learned, R.M., Luk, A., Hull, M.V., Lustig, K.D., Mangelsdorf, D.J., Shan, B. 1999. Identification of a nuclear receptor for bile acids. Science (Washington, D.C.) 284: 1362–5CrossRefGoogle ScholarPubMed
Mauchamp, B., Darrouzet, E., Malosse, C., Couillaud, F. 1999. 4′-OH-JH-III: an additional hydroxylated juvenile hormone produced by locust corpora allata in vitro. Insect Biochemistry and Molecular Biology 29: 475–80CrossRefGoogle Scholar
Nachman, R.J., Holman, G.M., Coast, G.M. 1998. Mimetic analogues of the myotropic/diuretic insect kinin neuropeptide family. pp. 379–91 in Coast, G.M. and Webster, S.G. (Eds.), Recent advances in arthropod endocrinology. Society for Experimental Biology Seminar Series 65. Cambridge: Cambridge University PressGoogle Scholar
Nachman, R.J., Garside, C.S., Tobe, S.S. 1999. Hemolymph and tissue-bound peptidase-resistant analogs of the insect allatostatins. Peptides 20: 23–9CrossRefGoogle ScholarPubMed
Palli, S.R., Osir, E.O., Eng, W-S, Boehm, M.F., Edwards, M., Kulscar, P., Ujváry, I., Hiruma, K., Prestwich, G.D., Riddiford, L.M. 1990. Juvenile hormone receptors in larval insect epidermis. Identification by photo-affinity labeling. Proceedings of the National Academy of Sciences USA 87: 796800CrossRefGoogle Scholar
Palli, S.R., Hiruma, K., Riddiford, L.M. 1991. Juvenile hormone and retinoic acid receptors in Manduca epidermis. Insect Biochemistry 21: 715CrossRefGoogle Scholar
Palli, S.R., Hiruma, K., Riddiford, L.M. 1992. An ecdysteroid-inducible Manduca gene similar to the Drosophila DHR3 gene, a member of the steroid hormone receptor superfamily. Developmental Biology 150: 306–18CrossRefGoogle Scholar
Palli, S.R., Touhara, K., Charles, J.P., Bonning, B.C., Atkinson, J.K., Trowell, S.C., Hiruma, K., Goodman, W.G., Kyriakides, T., Prestwich, G.D., Hammock, B.D., Riddiford, L.M. 1994. A nuclear juvenile hormone-binding protein from larvae of Manduca sexta: a putative receptor for the metamorphic action of juvenile hormone. Proceedings of the National Academy of Sciences USA 91: 6191–5CrossRefGoogle ScholarPubMed
Palli, S.R., Ladd, T.R., Retnakaran, A., Tomkins, W.L., Shu, S., Ramaswamy, S., Tanaka, Y. 2000. Choristoneura fumiferana entomopoxvirus prevents metamorphosis by modulating juvenile hormone and ecdysteroid titers. Insect Biochemistry and Molecular Biology. In pressGoogle Scholar
Parks, D.J., Blanchard, S.G., Bledsoe, R.K., Chandra, G., Consler, T.G., Kliewer, S.A., Stimmel, J.B., Willson, T.M., Zavacki, A.M., Moore, D.D., Lehmann, J.M. 1999. Bile acids: natural ligands for an orphan nuclear receptor. Science (Washington, D.C.) 284: 1365–8CrossRefGoogle ScholarPubMed
Pfister-Wilhelm, R., Lanzrein, B. 1996. Precocious induction of metamorphosis in Spodoptera littoralis (Noctuidae) by the parasitic wasp Chelonus inanitus (Braconidae): identification of the parasitoid larva as the key regulatory element and the host corpora allata as the main targets. Archives of Insect Biochemistry and Physiology 32: 511–253.0.CO;2-E>CrossRefGoogle Scholar
Pratt, G.E., Tobe, S.S. 1974. Juvenile hormone radiobiosynthesised by corpora allata of adult female locusts in vitro. Life Science 14: 575–86CrossRefGoogle ScholarPubMed
Pratt, G.E., Farnsworth, D.E., Siegel, N.R., McCormack, A.L., Shabanowitz, J., Hunt, D.F., Feyereisen, R. 1991. Identity of a second type of allatostatin from cockroach brains: an octadecapeptide amide with tyrosine-rich address sequence. Proceedings of the National Academy of Sciences USA 88: 2412–16CrossRefGoogle ScholarPubMed
Pratt, G.E., Unnithan, G.C., Fok, K.F., Siegel, N.R., Feyereisen, R. 1997. Structure-activity studies reveal two allatostatin receptor types in corpora allata of Diploptera punctata. Journal of Insect Physiology 43: 627–34CrossRefGoogle Scholar
Restifo, L.L., Wilson, T.G. 1998. A juvenile hormone agonist reveals distinct developmental pathways mediated by ecdysone-inducible broad complex transcription factors. Developmental Genetics 22: 141–593.0.CO;2-6>CrossRefGoogle ScholarPubMed
Retnakaran, A., Granett, J., Ennis, T. 1985. Insect growth regulators. pp. 529601in Kerkut, G.A. and Gilbert, L.I. (Eds.), Comprehensive insect physiology, biochemistry and pharmacology. Vol. 7. Oxford: Pergamon PressGoogle Scholar
Riddiford, L.M. 1972. Juvenile hormone and insect embryonic development: its potential role as an ovicide. pp. 95111in Menn, J.J. and Beroza, M. (Eds.), Insect juvenile hormones: chemistry and action. London: Academic PressCrossRefGoogle Scholar
Riddiford, L.M. 1994. Cellular and molecular actions of juvenile hormone. I. General considerations and premetamorphic actions. Advances in Insect Physiology 24: 213–74CrossRefGoogle Scholar
Riddiford, L.M. 1996. Juvenile hormone: the status of its “status quo” action. Archives of Insect Biochemistry and Physiology 32: 271–863.0.CO;2-W>CrossRefGoogle ScholarPubMed
Roe, R.M., Venkatesh, K. 1990. Metabolism of juvenile hormones: degradation and titer regulation. pp. 125–79 in Gupta, A.P. (Ed.), Morphogenetic hormones of arthropods. New Brunswick: Rutgers University PressGoogle Scholar
Russel, D.W. 1999. Nuclear hormone receptors control cholesterol catabolism. Cell 97: 539–42CrossRefGoogle Scholar
Sahota, T.S., Manville, J.F., White, E. 1994. Interaction between Sitka spruce weevil and its host, Picea sitchensis (Bong) Carr.: a new mechanism for resistance. The Canadian Entomologist 126: 1067–74CrossRefGoogle Scholar
Schal, C., Holbrook, G.L. 1999. Juvenile hormone analogs enhance feeding and the efficacy of insecticide baits in Blatella germanica (Dictyoptera: Blattellidae). Proceedings of the 7th International Conference on Juvenile Hormones, Jerusalem, Israel, Book of abstractsGoogle Scholar
Schelling, D., Jones, G. 1995. Functional identification of the transcription start site and the core promoter of the juvenile hormone esterase gene in Trichoplusia ni. Biochemical and Biophysical Research Communications 214: 286–94CrossRefGoogle ScholarPubMed
Schooley, D.A., Baker, F.C. 1985. Juvenile hormone biosynthesis. pp. 363–89 in Kerkut, G.A. and Gilbert, L.I. (Eds.), Comprehensive insect physiology, biochemistry and pharmacology. Vol. 7. Oxford: Pergamon PressGoogle Scholar
Sen, S.E., Ewing, G.J. 1997. Natural and unnatural terpenoid precursors of insect juvenile hormone. Journal of Organic Chemistry 62: 3529–36CrossRefGoogle Scholar
Sen, S.E., Ewing, G.J., Thursten, N. 1996 a. Characterization of lepidopteran prenyltransferase in Manduca sexta corpora allata. Archives of Insect Biochemistry and Physiology 32: 315–323.0.CO;2-R>CrossRefGoogle Scholar
Sen, S.E., Ewing, G.J., Childress, M. 1996 b. An in vitro assay for monitoring prenyl transferase activity in lepidopteran corpora allata. Journal of Agricultural and Food Chemistry 44: 472–6CrossRefGoogle Scholar
Sevala, V., Davey, K.G. 1989. Action of juvenile hormone on the follicle cells of Rhodnius prolixus: evidence for a novel regulatory mechanism involving protein kinase C. Experientia 45: 355–6CrossRefGoogle Scholar
Sevala, V., Davey, K.G., Prestwich, G.D. 1995. Photoaffinity labeling and characterization of a juvenile hormone binding protein in the membrane of follicle cells of Locusta migratoria. Insect Biochemistry and Molecular Biology 25: 267–73CrossRefGoogle Scholar
Shemshedini, L., Lanoue, M., Wilson, T.G. 1990. Evidence for a juvenile hormone receptor involved in protein synthesis in Drosophila melanogaster. Journal of Biological Chemistry 265: 1913–18CrossRefGoogle ScholarPubMed
Soldevila, A.I., Heuston, S., Webb, B.A. 1997. Purification and analysis of a gene product expressed using a poly-histidine baculovirus vector. Insect Biochemistry and Molecular Biology 27: 201–11CrossRefGoogle Scholar
Stay, B., Tobe, S.S., Mundall, E.C., Rankin, S. 1983. Ovarian stimulation of juvenile hormone biosynthesis in the viviparous cockroach, Diploptera punctata. General and Comparative Endocrinology 52: 341–9CrossRefGoogle ScholarPubMed
Steiner, B., Pfister-Wilhelm, R., Grossniklaus-Bürgin, C., Rembold, H., Treiblmayr, K., Lanzrein, B. 1999. Titres of juvenile hormone I, II, and III in Spodoptera littoralis (Noctuidae) from the egg to the pupal moult and their modification by the egg-larval parasitoid Chelonus inanitus (Braconidae). Journal of Insect Physiology 45: 401–13CrossRefGoogle Scholar
Stoltz, D.B. 1993. The polydnavirus life cycle. pp. 167–87 in Beckage, N.E., Thompson, S.N. and Federici, B.A. (Eds.), Parasites and pathogens of insects. Vol. I: Parasites. London: Academic PressCrossRefGoogle Scholar
Sutherland, T.D., Feyereisen, R. 1996. Target of cockroach allatostatin in the pathway of juvenile hormone biosynthesis. Molecular and Cellular Endocrinology 120: 115–23CrossRefGoogle ScholarPubMed
Sutherland, T.D., Unnithan, G.C., Andersen, J.F., Evans, P.H., Murataliev, M.B., Szabo, L.Z., Mash, E.A., Bowers, W.S., Feyereisen, R. 1998. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis. Proceedings of the National Academy of Sciences USA 95: 12884–9CrossRefGoogle Scholar
Teal, P.E., Nachman, R.J. 1997. Prolonged pheromonotropic activity of pseudopeptide mimics of insect pyrokinin neuropeptides after topical application or injection into a moth. Regulatory Peptides 72: 161–7CrossRefGoogle ScholarPubMed
Teal, P.E., Meredith, J.A., Nachman, R.J. 1999. Comparison of rates of penetration through insect cuticle of amphiphylic analogs of insect pyrokinin neuropeptides. Peptides 20: 6370CrossRefGoogle ScholarPubMed
Tobe, S.S., Pratt, G.E. 1974. The influence of substrate concentration on the rate of insect juvenile hormone biosynthesis by corpora allata of the desert locust in vitro. Biochemistry Journal 144: 107–13CrossRefGoogle ScholarPubMed
Tobe, S.S., Stay, B. 1985. Structure and regulation of the corpus allatum. Advances in Insect Physiology 18: 305432CrossRefGoogle Scholar
Tobe, S.S., Ruegg, R.P., Stay, B.A., Baker, F.A., Miller, C.A., Schooley, D.A. 1985. Juvenile hormone titer and regulation in the cockroach Diploptera punctata. Experientia 41: 1028–34CrossRefGoogle ScholarPubMed
Truman, J.W., Riddiford, L.M. 1999. The origins of insect metamorphosis. Nature (London) 401: 447–52CrossRefGoogle ScholarPubMed
Ujváry, I., Matolcsy, G., Bélai, I., Szurdoki, F., Bauer, K., Varjas, L., Kramer, K.J. 1996. Projuvenoids: synthesis and biological evaluation of sulfenylated, sulfinylated, and sulfonylated carbamates. Archives of Insect Biochemistry and Physiology 32: 659–693.0.CO;2-9>CrossRefGoogle ScholarPubMed
Unni, B., Barrera, P., Muszynska-Pytel, M., Bhaskaran, G., Dahm, K.H. 1993. Partial characterization of allatinhibin, a neurohormone of Manduca sexta. Archives of Insect Biochemistry and Physiology 24: 171–83CrossRefGoogle ScholarPubMed
Unnithan, G.C., Andersen, J.F., Hisano, T., Kuwano, E., Feyereisen, R. 1995. Inhibition of juvenile hormone biosynthesis and methyl farnesoate epoxidase activity by 1,5-disubstituted imidazoles in the cockroach, Diploptera punctata. Pesticide Science 43: 1319CrossRefGoogle Scholar
Venkataraman, V., O'Mahony, P.J., Manzcak, M., Jones, G. 1994. Regulation of juvenile hormone esterase gene transcription by juvenile hormone. Developmental Genetics 15: 391400CrossRefGoogle ScholarPubMed
Venkatesh, K., Crawford, C.L., Roe, R.M. 1988. Characterization and the developmental role of plasma juvenile hormone esterase in the adult cabbage looper, Trichoplusia ni. Insect Biochemistry 18: 5361CrossRefGoogle Scholar
Vermunt, A.M.W., Kurata, K., Hirai, M., Kamimura, M., Kiuchi, M., Shiotsuki, T. 1999. Juvenile hormone binding protein from the cytosol of the silk gland of Bombyx mori. Proceedings of the 7th International Conference on Juvenile Hormones, Jerusalem, Israel, Book of abstractsGoogle Scholar
Wang, Z., Ding, Q., Yagi, K.J., Tobe, S.S. 1994. Terminal stages in juvenile hormone biosynthesis in corpora allata of Diploptera punctata: developmental changes in enzyme activity and regulations by allatostatins. Journal of Insect Physiology 40: 217–23CrossRefGoogle Scholar
Wang, H., Chen, J., Hollister, K., Sowers, L.C., Forman, B.M. 1999. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Molecular Cell 3: 543–53CrossRefGoogle ScholarPubMed
Weaver, R.J., Freeman, Z.A., Pickering, M.G., Edwards, J.P. 1994. Identification of two allatostatins from the CNS of the cockroach Periplaneta americana: novel members of a family of neuropeptide inhibitors of insect juvenile hormone biosynthesis. Comparative Biochemistry and Physiology 107C: 119–27Google Scholar
Weaver, R.J., Edwards, J.P., Bendena, W.G., Tobe, S.S. 1998. Structures, functions and occurrence of insect allatostatic peptides. pp. 332in Coast, G.M. and Webster, S.G. (Eds.), Recent advances in arthropod endocrinology. Society for Experimental Biology Seminar Series 65. Cambridge: Cambridge University PressGoogle Scholar
Williams, C.M. 1956. The juvenile hormone of insects. Nature (London) 178: 212–13CrossRefGoogle Scholar
Williams, C.M. 1967. Third-generation pesticides. Scientific American 217: 1317CrossRefGoogle ScholarPubMed
Wilson, T.G., Fabian, J. 1986. A Drosophila melanogaster mutant resistant to a chemical analog of juvenile hormone. Developmental Biology 118: 190201CrossRefGoogle ScholarPubMed
Woodhead, A.P., Stay, B., Seidel, S.L., Khan, M.A., Tobe, S.S. 1989. Primary structure of four allatostatins: neuropeptide inhibitors of juvenile hormone synthesis. Proceedings of the National Academy of Sciences USA 86: 59976001CrossRefGoogle ScholarPubMed
Woodhead, A.P., Khan, M.A., Stay, B., Tobe, S.S. 1994. Two new allatostatins from the brains of Diploptera punctata. Insect Biochemistry and Molecular Biology 24: 257–63CrossRefGoogle ScholarPubMed
Wyatt, G.R. 1997. Juvenile hormone in insect reproduction — a paradox? European Journal of Entomology 94: 323–3Google Scholar
Wyatt, G.R., Davey, K.G. 1996. Cellular and molecular actions of juvenile hormone. II. Roles of juvenile hormone in adult insects. Advances in Insect Physiology 26: 1155CrossRefGoogle Scholar
Xu, J., Qiu, Y., DeMayo, F.J., Tsai, S.Y., Tsai, M.J., O'Malley, B.W. 1998. Partial hormone resistance in mice with disruption of the steroid receptor coactivator-1 (SRC-1) gene. Science-(Washington, D.C.) 279: 1922–5CrossRefGoogle ScholarPubMed
Yu, C.G., Hayes, T.K., Strey, A., Bendena, W.G., Tobe, S.S. 1995. Identification and partial characterization of receptors for allatostatins in brain and corpora allata of the cockroach Diploptera punctata using a binding assay and photoaffinity labeling. Regulatory Peptides 57: 347–58CrossRefGoogle ScholarPubMed
Zhang, J., Saleh, D.S., Wyatt, G.R. 1996. Juvenile hormone regulation of an insect gene: a specific transcription factor and a DNA response element. Molecular and Cellular Endocrinology 122: 1520CrossRefGoogle Scholar
Zhou, B., Hiruma, K., Shinoda, T., Riddiford, L.M. 1998. Juvenile hormone prevents ecdysteroid-induced expression of broad complex RNAs in the epidermis of the tobacco hornworm, Manduca sexta. Developmental Biology 203: 233–44CrossRefGoogle ScholarPubMed