Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-28T17:15:25.207Z Has data issue: false hasContentIssue false

GAMMA RADIATION DOSES FOR PREVENTING PUPARIATION AND ADULT EMERGENCE OF RHAGOLETIS MENDAX (DIPTERA: TEPHRITIDAE)

Published online by Cambridge University Press:  31 May 2012

Jennifer L. Sharp
Affiliation:
Subtropical Horticulture Research Station, USDA-ARS, 13601 Old Cutler Road, Miami, Florida, USA 33158
Sridhar Polavarapu*
Affiliation:
Rutgers Blueberry and Cranberry Research Center, Lake Oswego Road, Chatsworth, New Jersey, USA 08019
*
1Author to whom all correspondence should he addressed.

Abstract

Blueberry maggot, Rhagoletis mendax Curran, eggs and larvae infesting highbush ’Bluecrop’ and ’Elizabeth’ blueberries, Vaccinium corymbosum L. (Ericaceae), were treated with 4–1200 Gy of gamma radiation. The treatment reduced the number of immature stages that pupated and the number of adults that emerged from puparia. The lethal dose for 99.9968% mortality (LD 99.9968%) [lower and upper fiducial limits (FL)] estimated by linear regression analysis to stop pupariation was 1486 (1400–1585) Gy, at the 95% confidence level. The LD 99.99968% (lower and upper FL) estimated to stop flies emerging from puparia irradiated as immature stages was 88 (83–93) Gy, at the 95% confidence level as estimated by regression analysis. An estimated 100 762 larvae were killed, with no survivors, by irradiating 853 918 ’Bluecrop’ blueberries in bulk quantities with 71–776 Gy with a commercial irradiator. No flies or parasites emerged from puparia irradiated as larvae with ≥ 71 and > 80 Gy using commercial and research irradiators, respectively. Infestation rate of blueberry maggot larvae in nonirradiated ’Bluecrop’ and ’Elizabeth’ blueberries averaged 11.1 ± 1.2% and 14.3 ± 2.4%, respectively; the range of infestation rate was from 6.3% to 14.8% and 9.8% to 18%, respectively. Parasitism of blueberry maggot larvae by the larval–puparial parasite, Diachasmimorpha (Opius) mellea (Gahan) (Hymenoptera: Braconidae), averaged 10.1 ± 2.4% (range 3–13.3%).

Résumé

Des oeufs et des larves de la Mouche de l’airelle, Rhagoletis mendax Curran, infestant les cultivars Bluecrop et Elizabeth de l’airelle de corymbe, Vaccinium corymbosum L. (Ericaceae), ont été irradiés au moyen de rayons gamma de 4–1200 grays (Gy). Le traitement a entraîné la réduction du nombre de larves qui ont formé leur puparium et le nombre d’adultes émergés des pupariums. La dose LD 99,9968% [limites de confiance (FL) inférieure et supérieure] nécessaire pour inhiber la formation du puparium a été estimée à 1486 (1400–1585) Gy par régression linéaire, avec un intervalle de confiance de 95%. La dose LD 99,9968% (FL supérieure et inférieure) nécessaire à l’inhibition de l’émergence des pupariums par irradiation des larves a été estimée à 88 (83–93) Gy par analyse de régression, avec un intervalle de confiance de 95%. Un total estimé de 100 762 larves ont été tuées, sans qu’il y ait de survivant, en irradiant de 71–776 Gy 853 918 baies Bluecrop en masse au moyen d’un diffuseur commercial de radiations. Aucune mouche ou parasite n’est émergé des pupariums irradiés (au stade larvaire) de ≥ 71 Gy au moyen d’un diffuseur commercial et de > 80 Gy au moyen d’un irradiateur de recherche. Le taux d’infestation des larves de la Mouche de l’airelle a été évalué en moyenne à 11,1 ± 1,2% (étendue des taux d’infestation 6,3 à 14,8%) dans les baies Bluecrop et à 14,3 ± 2,4% (étendue des taux d’infestation 9,8 à 18%) dans les baies Elizabeth. Les larves de la Mouche de l’airelle étaient parasitées par Diachasmimorpha (Opius) mellea (Gahan) (Hymenoptera : Braconidae), qui infeste larves et pupariums, à raison de 10,1 ± 2,4% en moyenne (étendue 3–13,3%).

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Animal and Plant Health Inspection Service. 1986. Irradiation in the production, processing, and handling of food. Department of Health and Human Services, United States Food and Drug Administration, Final Rule 21, CFR Part 179, Docket No. 81N-0004. Federal Register 51(75): 13376–99Google Scholar
Anonymous. 1998. Changes to methyl bromide phase out in the United States. Available on the INTERNET at http://www.epa.gov/ozone/mbr/harmoniz/htmlGoogle Scholar
Baker, A.C. 1939. The basis for treatment of products where fruit flies are involved as a condition for entry into the United States. United States Department of Agriculture Circular 551Google Scholar
Burditt, A.K. Jr. 1994. Irradiation. pp. 101–17 in Sharp, J.L.Hallman, G.J. (Eds.), Quarantine treatments for pests of food plants. Boulder: WestviewGoogle Scholar
Burditt, A.K. Jr, Hungate, F.P. 1988. Gamma irradiation as a quarantine treatment for cherries infested by western cherry fruit fly (Diptera: Tephritidae). Journal of Economic Entomology 81: 859–62CrossRefGoogle Scholar
Canadian Food Inspection Agency. 1999. Directive D-99-02. Requirements for the import and domestic movement of fresh blueberries and fruit of other hosts of blueberry maggot moving from regulated areas in Canada and the United States to non-regulated areas in Canada. Plant Products Directorate, Plant Health and Production Division, Canadian Food Inspection Agency, NepeanGoogle Scholar
Couey, H.M., Chew, V. 1986. Confidence limits and sample size in quarantine research. Journal of Economic Entomology 79: 887–90CrossRefGoogle Scholar
Federal Clean Air Act. 1990. Federal Clean Air Act of 1990. Public Law 101-549, enacted November 15, 1990. WashingtonGoogle Scholar
Finney, D.J. 1971. Probit analysis. 3rd ed. Cambridge: Cambridge University PressGoogle Scholar
Fiskaali, D.A. (editor). 1991. The State of California commodity treatment manual. Vol. I. Treatments. Sacramento: State of California, Department of Food and AgricultureGoogle Scholar
Gaul, S.O., Neilson, W.T.A., Estabrooks, E.N., Crozier, L.M., Fuller, M. 1995. Deployment and utility of traps for management of Rhagoletis mendax (Diptera: Tephritidae). Journal of Economic Entomology 88: 134–39CrossRefGoogle Scholar
Guibord, M.O., Vincent, C., Wood, G.M. 1985. Note sur l'aire de distribution de la mouche du bluet, Rhagoletis mendax (Diptera: Tephritidae), au Canada. Phytoprotection 66: 6367Google Scholar
International Atomic Energy Agency. 1973. Radiation protection procedures. International Atomic Energy Agency, Vienna, Austria, Safety Series Number 38Google Scholar
Jona, R., Arzone, A. 1979. Control of Rhagoletis cerasi in cherries by gamma irradiation. Journal of Horticultural Science 54: 167–70CrossRefGoogle Scholar
Lathrop, F.H., Nickels, C.B. 1932. The biology and control of the blueberry maggot in Washington county, ME. United States Department of Agriculture Technical Bulletin 275Google Scholar
Miller, W.R., McDonald, R.E. 1996. Quality of ‘Brightwell’ and ‘Tifblue’ blueberries after gamma irradiation for quarantine treatment. HortScience 31: 1234CrossRefGoogle Scholar
Miller, W.R., Smittle, D.A. 1987. Storage quality of hand- and machine-harvested rabbiteye blueberries. Journal of the American Society for Horticultural Science 112: 487–90CrossRefGoogle Scholar
Miller, W.R., Mitcham, E.J., McDonald, R.E., King, J.R. 1994 a. Postharvest storage quality of gamma-irradiated ‘Climax’ rabbiteye blueberries. HortScience 29: 98101CrossRefGoogle Scholar
Miller, W.R., McDonald, R.E., McCollum, T.G., Smittle, B.J. 1994 b. Quality of ‘Climax’ blueberries after low dosage electron beam irradiation. Journal of Food Quality 17: 7179CrossRefGoogle Scholar
Miller, W.R., McDonald, R.E., Smittle, B.J. 1995. Quality of ‘Sharpblue’ blueberries after electron beam irradiation. HortScience 30: 306308CrossRefGoogle Scholar
Moore, J.N. 1993. The blueberry industry of North America. Acta Horticulturae 346: 1527CrossRefGoogle Scholar
Neilson, W.T.A., Wood, G.W. 1985. The blueberry maggot, economic importance, and management practices. Acta Horticulturae 165: 171–75CrossRefGoogle Scholar
Payne, J.A., Berlocher, S.H. 1995. Distribution and host plants of the blueberry maggot fly, Rhagoletis mendax (Diptera: Tephritidae), in Southeastern North America. Journal of the Kansas Entomological Society 68: 133–42Google Scholar
Pickett, A.D., Spicer, E.C. 1931. The blueberry maggot. Halifax: Nova Scotia Department of AgricultureGoogle Scholar
Prang, R.K., Lister, P.D. 1992. Controlled-atmosphere effects on blueberry maggot and lowbush blueberry fruit. HortScience 27: 1094–96CrossRefGoogle Scholar
Roth, H., Richardson, H.H. 1970. Ethylene dibromide, methyl bromide, and ethylene chlorobromide as fumigants for control of apple and blueberry maggots in fruit. Journal of Economic Entomology 63: 496–99CrossRefGoogle Scholar
Ruckelshaus, W.D. 1984. Ethylene dibromide, amendment of notice of intent to cancel registration of pesticide products containing ethylene dibromide. Federal Register 49(70): 14 182–85Google Scholar
SAS Institute Inc. 1985. SAS user's guide: statistics. Cary: SAS Institute Inc.Google Scholar
Steck, G.J., Payne, J.A. 1993. Blueberry maggot, Rhagoletis mendax (Diptera: Tephritidae). Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Entomology Circular 358Google Scholar
United Nations Environmental Programme. 1992. Methyl bromide atmospheric science, technology and economics. United Nations Environmental Programme, Ozone Secretariat, U.N. Headquarters, Nairobi, KenyaGoogle Scholar
Vincent, C., Lareau, M.J. 1989. Update on the distribution of the blueberry maggot, Rhagoletis mendax (Diptera: Tephritidae), in Canada. Acta Horticulturae 241: 333–37CrossRefGoogle Scholar