Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-23T15:23:56.691Z Has data issue: false hasContentIssue false

INSECTICIDAL ACTIVITY AND PERSISTENCE OF PHORATE, PHORATE SULFOXIDE, AND PHORATE SULFONE IN SOILS1

Published online by Cambridge University Press:  31 May 2012

C. R. Harris
Affiliation:
Research Institute, Agriculture Canada, London, Ontario N6A 5B7
R. A. Chapman
Affiliation:
Research Institute, Agriculture Canada, London, Ontario N6A 5B7

Abstract

Laboratory tests indicated that phorate, phorate sulfoxide, and phorate sulfone were toxic contact insecticides with broad spectrum activity. In general, p. sulfoxide was most toxic to insects > p. sulfone > phorate. When compared with other insecticides using 24–48 h old field crickets, Acheta pennsylvanicus (Burmeister), as test insects, the three compounds were less toxic by direct contact than carbofuran and fensulfothion, but as or more toxic than aldrin. P. sulfoxide and p. sulfone were strongly inactivated in moist Plainfield sand and were not as insecticidally active in soil against crickets as phorate. Nevertheless, the sulfoxide arid sulfone in soil were intermediate in toxicity between carbofuran and fensulfothion. The insecticidal activity of phorate, p. sulfoxide, and p. sulfone in soil was influenced by soil type, moisture, and temperature. Fumigant toxicity tests indicated that the three compounds volatilized from soil. Chemical analysis showed p. sulfone was most persistent in sand and muck > p, sulfoxide > phorate. Oxidation was observed to be a major degradation reaction for phorate and p. sulfoxide in both soils. Parallel bioassay tests indicated that, in sand, the biological action of "phorate" was due to the joint action of the three compounds. In a field study phorate EC, applied as a broadcast application at 3.4 kg AI/ha and incorporated into the top 7–8 cm of soil was slightly more persistent in muck than in sand. More than 99% and 98% of the applied phorate and its oxidation products disappeared from the sand and muck, respectively, within a year of treatment, indicating that the residues were only moderately persistent under climatic conditions encountered in southwestern Ontario. Low residues of p. sulfoxide and p. sulfone were detected in radishes grown on both soils in the first year but none were present in the second year. No residues were detected in carrots grown on either soil.

Résumé

Des analyses conduites en laboratoire montrent que le phorate, son sulfoxyde et son sulfone sont des insecticides de contact dotés d’un large spectre d’activité. D’une façon générale, c’est le sulfoxyde qui était le plus toxique pour les insectes, suivi du sulfone et enfin du phorate. Comparés à d’autres insecticides d’après leur action sur des grillons des champs, Acheta pennsylvanicus Burmeister de 24 à 48 h d’âge, les trois produits se sont révélés moins toxiques par contact direct que le carbofuran et le fensulfothion, mais au moins aussi toxiques que l’aldrine. Les formes sulfoxyde et sulfone ont été fortement inactivées sur sable Plainfield humide et n’étaient plus aussi efficaces dans le sol contre les grillons que le phorate. Néanmoins, leur toxicité dans le sol était intermédiaire entre celle du carbofuran et du fensulfothion. L’activité des trois formes de phorate dans le sol était fonction du type de sol, ainsi que de la température et de l’humidité du sol. Des essais de fumigation révèlent que les trois produits se volatilisent à partir du sol. L’analyse chimique montre que le sulfone persiste plus longtemps dans le sable et la terre noire (organique) que le sulfoxyde, et encore davantage que le phorate simple. On a constaté que l’oxydation était un important mécanisme de dégradation du phorate simple et de son sulfoxyde, et cela dans les deux types de sol. Des épreuves de dosage biologique nous apprennent par ailleurs que dans le sable l’action biologique de la fraction phorate était due à l’effet combiné des trois composés. Au champ, l’emploi d’un concentré émulsifiable de phorate épandu en pleine surface à la dose de 3,4 kg m.a./ha et incorporé dans la couche supérieure du sol (7–8 cm) a laissé un effet légèrement plus durable dans la terre noire que dans le sable. Plus de 99% du phorate et 98% de ses métabolites respectivement avaient disparu au bout d’un an dans les sables et la terre noire, ce qui montre que les résidus n’étaient que moyennement rémanents dans les conditions climatiques du sud-ouest de l’Ontario. De légères quantités de résidus du sulfoxyde et de sulfone ont été retrouvées dans des plantes de radis obtenues dans les deux sols dans la première année, mais il n’y en avait plus l’année suivante. On n’a pas retrouvé de résidus de ces substances dans les carottes quel qu’ait été le type de sol utilisé.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. econ. Ent. 18: 265267.CrossRefGoogle Scholar
Ahmad, N., Walgenbach, D. D., and Sutter, G. R.. 1979. Comparative disappearance of fonofos, phorate and terbufos soil residues under similar South Dakota field conditions. Bull. environ. Contam. Toxicol. 23: 423429.CrossRefGoogle ScholarPubMed
Bache, C. A. and Lisk, D. J.. 1966. Determination of oxidative metabolites of dimethoate and Thimet in soil by emission spectroscopic gas chromatography. J. Ass. off. anal. Chem. 49: 647650.Google Scholar
Burkhardt, C. C. and Fairchild, M. L.. 1967 a. Toxicity of insecticides to house crickets and bioassay of treated soils in the laboratory. J. econ. Ent. 60: 14961503.CrossRefGoogle Scholar
Burkhardt, C. C. and Fairchild, M. L.. 1967 b. Bioassay of field-treated soils to determine bioactivity and movement of insecticides. J. econ. Ent. 60: 16021610.CrossRefGoogle Scholar
Burns, R. G. 1971. The loss of Phosdrin and phorate insecticides from a range of soil types. Bull. environ. Contam. Toxicol. 6: 316321.CrossRefGoogle ScholarPubMed
Dewey, J. E. and Parker, B. L.. 1965. Increase in toxicity to Drosophila melanogaster of phorate-treated soils. J. econ. Ent. 58: 491497.CrossRefGoogle Scholar
Finney, D. J. 1952. Probit Analysis. A Statistical Treatment of the Sigmoid Response Curve. Cambridge Univ. Press, England. 318 pp.Google Scholar
Getzin, L. W. and Chapman, R. K.. 1959. Effect of soils upon the uptake of systemic insecticides by plants. J. econ. Ent. 52: 11601165.CrossRefGoogle Scholar
Getzin, L. W. and Chapman, R. K.. 1960. The fate of phorate in soils. J. econ. Ent. 53: 4751.CrossRefGoogle Scholar
Getzin, L. W. and Shanks, C. H. Jr., 1970. Persistence, degradation, and bioactivity of phorate and its oxidative analogues in soil. J. econ. Ent. 63: 5258.CrossRefGoogle Scholar
Hacskaylo, J., Lindquist, D. A., and Clark, J. C.. 1961. Phorate accumulation by cotton plants and recovery from soil. J. econ. Ent. 54: 411413.CrossRefGoogle Scholar
Harris, C. I. 1969. Movement of pesticides in soil. J. agric. fd Chem. 17: 8082.CrossRefGoogle Scholar
Harris, C. R. 1969. Laboratory studies on the persistence of biological activity of some insecticides in soils. J. econ. Ent. 62: 14371441.CrossRefGoogle ScholarPubMed
Harris, C. R. 1970. Laboratory evaluation of candidate materials as potential soil insecticides. III. J. econ. Ent. 63: 782787.CrossRefGoogle Scholar
Harris, C. R. 1977. Biological activity of chlorpyrifos, chlorpyrifos-methyl, phorate, and Counter® in soil. Can. Ent. 109: 11151120.CrossRefGoogle Scholar
Harris, C. R. and Lichtenstein, E. P.. 1961. Factors affecting the volatilization of insecticidal residues from soils. J. econ. Ent. 54: 10381045.CrossRefGoogle Scholar
Harris, C. R. and Mazurek, J. H.. 1964. Comparison of the toxicity to insects of certain insecticides applied by contact and in the soil. J. econ. Ent. 57: 698702.CrossRefGoogle Scholar
Harris, C. R. and Mazurek, J. H.. 1966. Laboratory evaluation of candidate materials as potential soil insecticides. J. econ. Ent. 59: 12151221.CrossRefGoogle Scholar
Harris, C. R., Svec, H. J., and Sans, W. W.. 1971. Toxicological studies on cutworms. VII. Microplot field experiments on the effectiveness of four experimental insecticides applied as rye cover crop and soil treatments for control of the dark-sided cutworm. J. econ. Ent. 64: 493496.CrossRefGoogle Scholar
Ives, N. F. and Guiffrida, L.. 1970. Gas-liquid chromatographic column preparation for adsorptive compounds. J. Ass. off. anal. Chem. 53: 973977.Google Scholar
Lichtenstein, E. P., Furhremann, T. W., Schulz, K. R., and Liang, T. T.. 1973. Effects of field application methods on the persistence and metabolism of phorate in soils and its translocation into crops. J. econ. Ent. 66: 863866.CrossRefGoogle ScholarPubMed
Lichtenstein, E. P., Fuhremann, T. W., and Schulz, K. R.. 1974. Translocation and metabolism of [14C] phorate as affected by percolating water in a model soil-plant ecosystem. J. agric. fd Chem. 22: 991996.CrossRefGoogle Scholar
Lichtenstein, E. P., Liang, T. T., and Fuhremann, T. W.. 1978. A compartmentalized microcosm for studying the fate of chemicals in the environment. J. agric. fd Chem. 26 948953.CrossRefGoogle Scholar
Menn, J. J. 1962. The metabolism of phorate, an organophosphorus insecticide in three insect species. J. econ. Ent. 55: 9096.CrossRefGoogle Scholar
Menzer, R. E., Fontanilla, E. L., and Ditman, L. P.. 1970. Degradation of disulfoton and phorate in soil influenced by environmental factors and soil type. Bull. environ. Contam. Toxicol. 5: 15.CrossRefGoogle ScholarPubMed
Mithyantha, M. S. and Perur, N. G.. 1974. Persistence of phorate [O,O-diethyl S-(ethylthio)methyl phosphorodithioate] in four soils of Karnataka state. Indian J. agric. Chem. 8: 143148.Google Scholar
Mulla, M. S., Georghiou, G. P., and Cramer, H. W.. 1961. Residual activity of organophosphorus insecticides in soil as tested against the eye gnat, Hippelates collusor. J. econ. Ent. 54: 865870.CrossRefGoogle Scholar
Parker, B. L. and Dewey, J. E.. 1965. Decline of phorate and dimethoate residues in treated soils based on toxicity to Drosophila melanogaster. J. econ. Ent. 58: 106111.CrossRefGoogle Scholar
Patterson, R. S. and Rawlins, W. A.. 1968. Loss of phorate from a granular formulation applied in the soil. Florida Ent. 51: 143150.CrossRefGoogle Scholar
Rajukkannu, K., Raguraj, R., Krishnamurthy, K. K., and Subramaniam, T. R.. 1977. Persistence of phorate and carbofuran in flooded soils. Pesticides 11: 1415.Google Scholar
Read, D. C. 1969. Persistence of some newer insecticides in mineral soils as measured by bioassay. J. econ. Ent. 62: 13381342.CrossRefGoogle ScholarPubMed
Read, D. C. 1971. Bioassays on the activation and deactivation of some new insecticides in a mineral soil and absorption of toxic components by rutabagas. J. econ. Ent. 64: 796800.CrossRefGoogle Scholar
Read, D. C. 1976. Comparisons of residual toxicities of twenty-four registered or candidate pesticides applied to field microplots of soil by different methods. J. econ. Ent. 69: 429437.CrossRefGoogle Scholar
Schulz, K. R., Lichtenstein, E. P., Fuhremann, T. W., and Liang, T. T.. 1973. Movement and metabolism of phorate under field conditions after granular band applications. J. econ. Ent. 66: 873875.CrossRefGoogle ScholarPubMed
Suett, D. L. 1971. Persistence and degradation of chlorfenvinphos, diazinon, fonofos and phorate in soils and their uptake by carrots. Pestic. Sci. 2: 105111.CrossRefGoogle Scholar
Suett, D. L. 1974. Uptake of chlorfenvinphos and phorate from soil by carrots as influenced by mode of application and cultivar. Pestic. Sci. 5: 5771.CrossRefGoogle Scholar
Suett, D. L. 1975. Persistence and degradation of chlorfenvinphos, chlormephos, disulfoton, phorate, and pirimiphos-ethyl following spring and late-summer soil application. Pestic. Sci. 6: 385393.CrossRefGoogle Scholar
Walter-Echols, G. and Lichtenstein, E. P.. 1977. Microbial reduction of phorate sulfoxide to phorate in a soil-lake mud-water microcosm. J. econ. Ent. 70: 505509.CrossRefGoogle Scholar
Walter-Echols, G. 1978 a. Effects of lake bottom mud on the movement and metabolism of 14C-phorate in a flooded soil-plant system. J. environ. Sci. Hlth B13: 149168.Google Scholar
Walter-Echols, G. 1978 b. Movement and metabolism of 14C phorate in a flooded soil system. J. agric. fd Chem. 26: 599604.CrossRefGoogle Scholar