Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T22:01:24.671Z Has data issue: false hasContentIssue false

ODOR-MEDIATED RESPONSES OF BEMBIDION OBTUSIDENS (COLEOPTERA: CARABIDAE) IN A WIND TUNNEL

Published online by Cambridge University Press:  31 May 2012

W. G. Evans
Affiliation:
Department of Entomology, University of Alberta, Edmonton T6G 2E3

Abstract

Cyanobacterial mats of Oscillatoria spp., found in the habitat of Bembidion obtusidens, a halophilic carabid beetle, emit metabolites that act as allelochemic attractants to these insects. In a wind tunnel designed for use with small, fast-running carabid beetles, B. obtusidens adults responded to a homogeneously dispersed wind-borne mixture of these allelochemics by walking upwind. These results suggest that wind-borne metabolites of Oscillatoria spp. could act as distant chemical cues that invoke positive, odor-mediated anemotaxis in migrant B. obtusidens, enabling them to locate their habitat.

Résumé

On trouve sur les plages de lacs salés (l'habitat de Bembidion obtusidens, un carabique halophile) des amas d'algues bleu-vert du genre Oscillatoria. Ces dernières émettent des métabolites qui agissent comme substances allélochimiques attractives pour B. obtusidens. Des adultes de cette espèce ont été testés dans une soufflerie conçue spécialement pour des Coléoptères de petite taille à mouvements rapides. Ils ont réagi à un mélange volatile homogène de ces substances allélochimiques en se déplaçant sous le vent. Ces résultats suggèrent que les métabolites volatiles d'Oscillatoria spp. transportés par le vent servent de repère chimique à distance; leur détection provoque une réponse anémotactique positive chez les adultes de B. obtusidens en migration, aidant ceux-ci à localiser leur habitat.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batschelet, E. 1972. Recent statistical methods for orientation data. pp. 6191in Galler, S. R., Schmidt-Koenig, K., Jacobs, G. J., and Belleville, R. E. (Eds.), Animal Orientation and Navigation. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC.Google Scholar
Bell, W. J. and Kramer, E.. 1980. Sex pheromone-stimulated orientation of the American cockroach on a servosphere apparatus. J. Chem. Ecol. 6: 287295.CrossRefGoogle Scholar
Bell, W. J. and Tobin, T. R.. 1982. Chemo-orientation. Biol. Rev. 57: 219260.Google Scholar
Cardé, R. T. and Hagaman, T. E.. 1979. Behavioral responses of the gypsy moth in a wind tunnel to air-borne enantiomers of disparlure. Environ. Ent. 8: 475484.Google Scholar
Evans, W. G. 1982. Oscillatoria sp. (Cyanophyta) mat metabolites implicated in habitat selection in Bembidion obtusidens (Coleoptera; Carabidae). J. Chem. Ecol. 8: 671678.CrossRefGoogle Scholar
Evans, W. G. 1983. Habitat selection in the Carabidae. Coleopts Bull. 37: 164167.Google Scholar
Gorlin, S. M. and Slezinger, I. I.. 1966. Wind tunnels and their instrumentation. Israel Program for Scientific Translations, Jerusalem.Google Scholar
Jones, R. L. 1981. Chemistry of semiochemicals involved in parasitoid-host and predator-prey relationships. pp. 239250in Nordlund, D. A., Jones, R. L., and Lewis, W. J., Semiochemicals. Their Role in Pest Control. Wiley, NY.Google Scholar
Jones, O. T., Lomer, R. A., and Howse, P. E.. 1981. Responses of male Mediterranean fruit flies, Ceretitis capitata, to trimedlure in a wind tunnel of novel design. Physiol. Ent. 6: 175181.Google Scholar
Kennedy, J. S. 1977. Olfactory responses to distant plants and other odor sources. pp. 6791in Shorey, H. H. and McKelvey, J. J. Jr., Chemical Control of Insect Behaviour. Wiley, NY.Google Scholar
Kennedy, J. S. 1982. Mechanism of moth sex attraction: a modified view based on wind-tunnel experiments with flying male Adoxophyes. Les Colloques de L'INRA 7: 189192.Google Scholar
Kennedy, J. S. 1983. Zigzagging and casting as a programmed response to wind-borne odour: a review. Physiol. Ent. 8: 109120.CrossRefGoogle Scholar
Kennedy, J. S., Ludlow, A. R., and Sanders, C. J.. 1980. Guidance system used in moth sex attraction. Nature 228: 475477.Google Scholar
Kennedy, J. S., Ludlow, A. R., and Sanders, C. J.. 1981. Guidance of flying male moths by wind-borne sex pheromone. Physiol. Ent. 6: 395412.Google Scholar
Kramer, E. 1975. The orientation of walking honeybees in odour fields with small concentration gradients. Physiol. Ent. 1: 2737.Google Scholar
Marsh, D., Kennedy, J. S., and Ludlow, A. R.. 1978. An analysis of anemotactic zigzagging flight in male moths stimulated by pheromone. Physiol. Ent. 3: 221240.Google Scholar
Visser, J. H. 1976. The design of a low-speed wind tunnel as an instrument for the study of olfactory orientation in the Colorado beetle (Leptinotarsa decemlineata). Entomologia exp. appl. 20: 275288.Google Scholar
Zar, J. H. 1974. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ. 620 pp.Google Scholar