Hostname: page-component-84b7d79bbc-2l2gl Total loading time: 0 Render date: 2024-07-28T17:18:36.643Z Has data issue: false hasContentIssue false

Pathogenicity of two new isolates of Metarhizium anisopliae from Canadian soil to Melanoplus bivittatus (Orthoptera: Acrididae) and Tenebrio molitor (Coleoptera: Tenebrionidae)

Published online by Cambridge University Press:  02 April 2012

Adil Adatia
Affiliation:
Department of Geography, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
Dan Johnson*
Affiliation:
Department of Geography, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
Susan Entz
Affiliation:
Department of Geography, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4
*
1 Corresponding author (e-mail: dan.johnson@uleth.ca).

Abstract

Worldwide biological-control research has shown that the fungal entomopathogen Metarhizium anisopliae (Metschnikoff) is an alternative to chemical insecticides for controlling grasshoppers and locusts. The pathogenicity of two recently discovered isolates of M. anisopliae var. anisopliae Driver and Milner from Canadian soil to the key grasshopper pest Melanoplus bivittatus (Say) and the yellow mealworm, Tenebrio molitor L., was determined by means of laboratory bioassays. Insects were fed a single dose of 105 conidia suspended in sunflower oil on food (a standard-size lettuce wafer). Subsequent feeding activity, movement, and mortality were assessed daily. The isolates were equally pathogenic, and similar in pathogenicity to the industry standard, Green Guard (M. anisopliae var. acridum Driver and Milner). Treatment with the three isolates resulted in 50% grasshopper mortality in 5–6 days and 90% mortality in 6–7 days.

Résumé

La recherche en lutte biologique à l'échelle globale a démontré que le champignon entomopathogène Metarhizium anisopliae (Metschnikoff) représente une solution de rechange aux insecticides chimiques pour le contrôle des criquets et des locustes. La pathogénicité de deux isolats de M. anisopliae var. anisopliae Driver et Milner découverts récemment dans du sol canadien a été déterminée dans des essais de laboratoire sur l'important criquet ravageur Melanoplus bivittatus (Say) et l'adulte du ver de farine jaune Tenebrio molitor L. Les insectes ont reçu une seule dose de 105 conidies suspendues dans de l'huile de tournesol sur de la nourriture (une pastille de laitue de taille standard). Les jours suivants, leur activité alimentaire, leurs déplacements et leur mortalité ont été notés. Les deux isolats sont également pathogènes et leur pathogénicité est semblable à celle de la norme industrielle de Green Guard (M. anisopliae var. acridum Driver and Milner). Un traitement avec les trois isolats cause une mortalité des criquets de 50 % en 5–6 jours et de 90 % en 6–7 jours.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18: 265267.CrossRefGoogle Scholar
Arthurs, S., Thomas, M.B., and Langewald, J. 2003. Field observations of the effects of fenitrothion and Metarhizium anisopliae var. acridum on non-target ground dwelling arthropods in the Sahel. Biological Control, 26: 333340.CrossRefGoogle Scholar
Chase, A.R., Osborne, L.S., and Ferguson, V.M. 1986. Selective isolation of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae from an artificial potting medium. Florida Entomologist, 69: 285292.Google Scholar
Danfa, A., and van der Valk, H.C.H.G. 1999. Laboratory testing of Metarhizium spp. and Beauveria bassiana on Sahelian non-target arthropods. Biocontrol Science and Technology, 9: 187198.CrossRefGoogle Scholar
Entz, S.C., Kawchuk, L.M., and Johnson, D.L. 2008. Discovery of a North American genetic variant of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae pathogenic to grasshoppers. BioControl, 53: 327339.CrossRefGoogle Scholar
Inglis, G.D., Johnson, D.L., and Goettel, M.S. 1997. Field and laboratory evaluation of two conidial batches of Beauveria bassiana (Balsamo) Vuillemin against grasshoppers. The Canadian Entomologist, 129: 171186.CrossRefGoogle Scholar
Johnson, D.L., Huang, H.C., and Harper, A.M. 1988. Mortality of grasshoppers (Orthoptera: Acrididae) inoculated with a Canadian isolate of the fungus Verticillium lecanii. Journal of Invertebrate Pathology, 52: 335342.Google Scholar
Johnson, D.L., Smits, J.E., Jaronski, S.T., and Weaver, D.K. 2002. Assessment of health and growth of ring-necked pheasants following consumption of infected insects or conidia of entomopathogenic fungi, Metarhizium anisopliae var. acridum and Beauveria bassiana, from Madagascar and North America. Journal of Toxicology and Environmental Health, 65: 21452162.Google Scholar
Lomer, C.J., Bateman, R.P., Johnson, D.L., Lange-wald, J., and Thomas, M.B. 2001. Biological control of locusts and grasshoppers. Annual Review of Entomology, 46: 667702.CrossRefGoogle ScholarPubMed
Long, Z., and Hunter, D.M. 2005. Laboratory and field trials of Green Guard® (Metarhizium anisopliae var. acridum) (Deuteromycotina: Hyphomycetes) against the oriental migratory locust (Locusta migratoria manilensis) (Orthoptera: Acrididae) in China. Journal of Orthoptera Research, 14: 2730.CrossRefGoogle Scholar
Milner, R.J., Lim, R.P., and Hunter, D.M. 2002. Risks to the aquatic ecosystem from the application of Metarhizium anisopliae for locust control in Australia. Pest Management Science, 58: 718723.CrossRefGoogle Scholar
Peveling, R., and Demba, S.A. 2003. Toxicity and pathogenicity of Metarhizium anisopliae var. acridum (Deuteromycotina, Hyphomycetes) and fipronil to the fringe-toed lizard Acanthodactylus dumerili (Squamata: Lacertidae). Environmental Toxicology and Chemistry, 22: 14371447.Google Scholar
Peveling, R., and Demba, S.A. 1997. Virulence of the entomopathogenic fungus Metarhizium flavoviride Gams and Rozsypal and toxicity of diflubenzuron, fenitrothion-esfenvalerate and profenofos-cypermethrin to nontarget arthropods in Mauritania. Archives of Environmental Contamination and Toxicology, 32: 6979.Google Scholar
Peveling, R., Attignon, S., Langewald, J., and Ouambama, Z. 1999. An assessment of the impact of biological and chemical grasshopper control agents on ground-dwelling arthropods in Niger, based on presence/absence sampling. Crop Protection, 18: 323339.Google Scholar
Sauchyn, D., and Kulshreshtha, S. 2007. The Prairies. In From impacts to adaptation: Canada in a changing climate 2007. Edited by Lemmen, D.S., Warren, F.J., Lacroixand, J., and Bush, E.. Government of Canada, Ottawa, Ontario.Google Scholar
Smits, J.E., Johnson, D.L., and Lomer, C. 1999. Pathological and physiological responses of ring-necked pheasant chicks following dietary exposure to the fungus Metarhizium flavoviride, a biocontrol agent for grasshoppers in Africa. Journal of Wildlife Diseases, 35: 194203.CrossRefGoogle Scholar
Zimmermann, G. 2007. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, 17: 879920.Google Scholar