Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-13T01:14:19.586Z Has data issue: false hasContentIssue false

Protogyny, protandry, and bimodal emergence patterns in necrophagous Diptera1

Published online by Cambridge University Press:  31 May 2012

Matthias Buck*
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
*

Abstract

The emergence patterns of Diptera breeding in small-sized and buried carrion were studied in rearing experiments with field-exposed baits. Development times are reported for 52 species in the families Phoridae, Sphaeroceridae, Sepsidae, Heleomyzidae, Anthomyiidae, Fanniidae, Muscidae, Sarcophagidae, Psychodidae, and Sciaridae. Most species showed a synchronous emergence of males and females. Protandry was detected in Hydrotaea ignava (Harris) (Muscidae), H. palaestrica (Meigen), and Psychoda minuta (Banks) (Psychodidae). Protogyny was found in several species of Phoridae, namely Conicera similis (Haliday), C. schnittmanni Schmitz, Anevrina unispinosa (Zetterstedt), and Triphleba dudai (Schmitz). Conicera schnittmanni and T. dudai showed two discrete emergence periods for each sex, which is due to a delayed emergence of some specimens. Protogyny is a rare phenomenon in Diptera and insects in general, and has never been reported before in Phoridae. The significance of protogyny could not be ascertained in the examined species, because of insufficient information on their mating systems and female receptivity patterns.

Résumé

L’émergence de diptères qui se reproduisent dans des carcasses de petite taille et des charognes enfouies dans le sol a été déterminée à l’aide d’élevages sur des appâts exposés en nature. La durée du développement a été évaluée chez 52 espèces appartenant aux familles Phoridae, Sphaeroceridae, Sepsidae, Heleomyzidae, Anthomyiidae, Fanniidae, Muscidae, Sarcophagidae, Psychodidae et Sciaridae. L’émergence des mâles et des femelles est synchrone chez la plupart des espèces. Il y a protandrie chez Hydrotaea ignava (Harris) (Muscidae), chez H. palaestrica (Meigen) et Psychoda minuta (Banks) (Psychodidae). Il y a protogynie chez plusieurs espèces de Phoridae, notamment Conicera similis (Haliday), C. schnittmanni Schmitz, Anevrina unispinosa (Zetterstedt) et Triphleba dudai (Schmitz). Chez C. schnittmanni et T. dudai, il existe deux périodes d’émergence bien définies chez les mâles et les femelles parce que certains individus tardent à émerger. La protogynie est un phénomène rare chez les diptères et chez les insectes en général et n’a jamais été observée auparavant chez des Phoridae. La fonction de la protogynie n’a pu être déterminée chez les espèces étudiées parce que le système d’accouplement de ces insectes et la réceptivité des femelles sont mal connus.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This study was conducted at the Department of Ecology and Morphology of Animals, University of Ulm, Germany.

References

Benner, D.B., Ostermeyer, E.C. 1980. Some observations on the life history of the fly Megaselia scalaris Loew (Phoridae) with special reference to the eclosion pattern. Journal of the Tennessee Academy of Science 55: 103–5Google Scholar
Buck, M. 1997. Untersuchungen zur ökologischen Einnischung saprophager Dipteren unter besonderer Berücksichtigung der Phoridae und Sphaeroceridae (Brachycera/Cyclorrhapha). PhD thesis, University of Ulm (Germany). Göttingen: Cuvillier-VerlagGoogle Scholar
Colyer, C.N. 1954. The “coffin” fly, Conicera tibialis Schmitz (Dipt., Phoridae). Journal of the Society for British Entomology 4: 203–6Google Scholar
Graham-Smith, G.S. 1916. Observations on the habits and parasites of common flies. Parasitology 8: 440544CrossRefGoogle Scholar
Hanski, I. 1976. Breeding experiments with carrion flies (Diptera) in natural conditions. Annales Entomologici Fennici 42: 113–21Google Scholar
Joswig, W. 1985. Untersuchungen zur Konkurrenz und Koexistenz necrophager Dipteren in toten Gehäuseschnecken. PhD thesis, University of Bayreuth, GermanyGoogle Scholar
Lewis, C.B., Bletchly, J.D. 1943. The emergence rhythm of the dung-fly, Scopeuma (= Scatophaga) stercoraria (L.). Journal of Animal Ecology 12: 11–8CrossRefGoogle Scholar
Meßner, B., Popp, A., Fries, H. 1996. Buckelfliegen (Phoridae) und ihre Massenentwicklung in der Gräberfauna. Entomologische Nachrichten und Berichte 40: 133–4Google Scholar
Prawirodisastro, M., Benjamin, D.M. 1979. Laboratory study on the biology and ecology of Megaselia scalaris (Diptera: Phoridae). Journal of Medical Entomology 16: 317–20CrossRefGoogle Scholar
Rao, Y.R. 1961. Notes on the life-history and habits of Chonocephalus depressus de Meijere (Diptera: Phoridae) in South India. Proceedings of the Royal Entomological Society of London Series A General Entomology 36: 163–7CrossRefGoogle Scholar
Schmitz, H. 1938. 33. Phoridae. pp 164in Lindner, E. (Ed), Die Fliegen der paläarktischen Region, volume 4(7), Lieferung 123. Stuttgart: Schweizerbart'sche VerlagsbuchhandlungGoogle Scholar
Tauber, M.J. 1968. Biology, behavior, and emergence rhythm of two species of Fannia (Diptera: Muscidae). University of California Publications in Entomology 50: 186Google Scholar
Thornhill, R., Alcock, J. 1983. The evolution of insect mating systems. Cambridge (Massachusetts) and London: Harvard University PressCrossRefGoogle Scholar
Wiklund, C., Fagerström, T. 1977. Why do males emerge before females? A hypothesis to explain the incidence of protandry in butterflies. Oecologia 31: 153–8CrossRefGoogle ScholarPubMed