Hostname: page-component-6d856f89d9-gndc8 Total loading time: 0 Render date: 2024-07-16T06:33:38.165Z Has data issue: false hasContentIssue false

REGIONAL RESISTANCE TO INSECTICIDES IN PSYLLA PYRICOLA FROM PEAR ORCHARDS IN OREGON1

Published online by Cambridge University Press:  31 May 2012

P.A. Follett
Affiliation:
Department of Entomology, Oregon State Univenity, Corvallis, OR 97331
B.A. Croft
Affiliation:
Department of Entomology, Oregon State Univenity, Corvallis, OR 97331
P.H. Westigard
Affiliation:
Department of Entomology, Oregon State Univenity, Corvallis, OR 97331

Abstract

Using a slide-dip bioassay, Psylla pyricola Forester from intensively sprayed, minimally sprayed (IPM), recently abandoned, and long-abandoned pear orchards in the Hood River, Rogue River, and Willamette valleys of Oregon were surveyed for resistances to azinphosmethyl, endosulfan, Perthane®, and fenvalerate. Lethal-concentration (LC50) values showed resistance levels from 12- to 41-fold to azinphosmethyl and 5- to 12-fold for endosulfan in selected populations. Resistance patterns did not correlate with orchard-treatment histories in the Hood River and Rogue River valleys, where even long-abandoned orchards harbored resistance psylla. There was better association between treatment histories and resistance levels in populations from the more widely scattered orchards in the Willamette Valley. A regional analysis of mean LC50 values indicated that psylla resistance was significantly higher to azinphosmethyl in the Rogue River Valley and to endosulfan in the Hood River Valley. Regional resistance levels for these compounds reflect differences in intensity of past use. A regional hypothesis is proposed to explain the patterns of resistance developed in the Hood River and Rogue River Valleys, where pear production is intensive as opposed to the more localized patterns of resistance in the Willamette Valley. Applications of results to the management of resistance are discussed.

Résumé

On a étudié la résistance de Psylla pyricola Forester à l'azinphosméthyl, l'endosulfan, le Perthane® et le fenvalerate, dans des vergers de poiriers qui étaient soit intensivement arrosés, arrosés au minimum (LI), récemment abandonnés ou abandonnés depuis long-temps, dans les vallées de Willamette, de Hood River et de Rogue River, en utilisant le test de l'immersion sur lame microscopique. Les CL50 de populations choisies ont révélé des facteurs de résistance de 12 à 41 fois pour l'azinphosméthyl et de 5 à 12 fois pour l'endosulfan. La résistance n'était pas corrélée avec l'historique d'arrosage des vergers dans les vallées de Hood River et de Rogue River, où même des vergers abandonnés depuis longtemps hébergeaient des psylles résistants. On a observé une meilleure corrélation entre l'historique des traitements et la résistance dans les vergers plus dispersés de la vallée de Willamette. L'analyse régionale des CL50 a indiqué que le psylle était plus résistant à l'azinphosméthyl dans la vallée de Rogue River, et à l'endosulfan dans la vallée de Hood River. Les niveaux de résistance régionale pour ces produits reflètent des différences d'intensité de leur utilisation. On propose une hypothèse régionale pour expliquer les patrons de résistance apparus dans les vallées de Hood River et de Rogue River, où la culture du poirier est intensive, contrairement aux patrons de résistance plus localisés de la vallée de Willamette. On discute de l'application de ces résultats à la régie de la résistance.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busvine, J.R. 1971. A critical review of the techniques for testing insecticides, 2nd ed. Commonwealth Agricultural Bureaux, London. 345 pp.Google Scholar
Busvine, J.R. 1980. Recommended methods for measurement of pest resistance to pesticides. FAO Plant Production and Protection Paper No. 21. 19 pp.Google Scholar
Croft, B.A., and Hoyt, S.C. 1978. Considerations in the use of pyrethroid insecticides in deciduous fruit pest control in the U.S.A. Environ. Ent. 7: 626630.CrossRefGoogle Scholar
Fields, G.J., and Zwick, R.W. 1977. Integrated control of pear psylla in Oregon's Hood River Valley. Oreg. St. Univ. Circ. 660. 8 pp.Google Scholar
Follett, P.A. 1984. Monitoring pesticide resistance in Psylla pyricola Forester from western Oregon pear orchards. M.S Thesis, Oreg. St. Univ., Corvallis. 65 pp.Google Scholar
Fye, R.E. 1981. Method of rearing the pear psylla. J. econ. Ent. 74: 490491.CrossRefGoogle Scholar
Gut, L.J., Jochums, C.E, Westigard, P.H, and Liss, W.J. 1982. Variations in pear psylla (Psylla pyricola Foerster) densities in southern Oregon orchards and its implications. Acta Hort. 124: 101111.CrossRefGoogle Scholar
Harries, F.H., and Burts, E.C. 1965. Insecticide resistance in pear psylla. J. econ. Ent. 58: 712713.CrossRefGoogle Scholar
Madsen, H.F., Westigard, P.H, and Sisson, R.L. 1963. Observations on the natural control of pear psylla, Psylla pyricola Foerster, in California. Can. Ent. 95: 837844.CrossRefGoogle Scholar
Riedl, H., Westigard, P.H, Bethell, R.S, and DeTar, J.E. 1981. Problems with chemical control of pear psylla. Calif. Agric. 35: 79.Google Scholar
Tashman, L.J., and Lamborn, K.R. 1979. The ways and means of statistics. Harcourt/Brace/Jovanovich, Inc., NY. 527 pp.Google Scholar
Westigard, P.H., Gentner, L., and Butt, B.A. 1976. Codling moth: egg and first instar mortality on pear with special reference to varietal susceptibility. Environ. Ent. 5: 554.CrossRefGoogle Scholar
Westigard, P.H., and Zwick, R.W. 1972. The pear psylla in Oregon. Oreg. St. Agric. Bull. 122. 22 pp.Google Scholar