Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T03:12:39.087Z Has data issue: false hasContentIssue false

DIAPAUSE TERMINATION AND MORPHOGENESIS OF HOLCOTHORAX TESTACEIPES RATZEBURG (HYMENOPTERA: ENCYRTIDAE), AN INTRODUCED PARASITOID OF THE SPOTTED TENTIFORM LEAFMINER, PHYLLONORYCTER BLANCARDELLA (F.) (LEPIDOPTERA: GRACILLARIIDAE)

Published online by Cambridge University Press:  31 May 2012

T. Wang
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
J.E. Laing
Affiliation:
Department of Environmental Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

Abstract

Low temperature is a major factor regulating diapause development in Holcothorax testaceipes Ratzeburg. Diapausing pupae required a cold period of 0°C, 5°C, or outdoor (≤0°C) for ca. 15 weeks to terminate diapause. The pupae required a further 21–27 days at 21°C for 50% emergence. Longer periods and higher temperatures of storage often were associated with shorter times of morphogenesis and duration of emergence. Percentage emergence of H. testaceipes was constant after various periods of cold storage at low temperatures. After storage at 0°C, pupae held at 21°C and a 16-h photophase reached 50% emergence sooner than those held at the same temperature but at a 12-h photophase. Photoperiod did not affect percentage or duration of emergence of the parasitoid. The threshold temperature for development of pupal H. testaceipes was estimated to be 9°C regardless of sex or host species. The thermal constant did not vary with sex of the parasitoids but differed significantly for H. testaceipes reared on Phyllonorycter ringoniella Matsumura (237 DD) and on Phyllonorycter blancardella (F.) (202 DD). Temperatures from 11 to 29°C did not affect percentage and duration of emergence from overwintered pupae, which were 75.5% and 2.4 days respectively, when reared on P. ringoniella, and 86.2% and 1.7 days respectively, on P. blancardella. These results suggest that H. testaceipes accepts P. blancardella as a host and will be synchronized with its development in Ontario.

Résumé

La froid est un facteur majeur de régulation de la diapause chez Holcothorax testaceipes Ratzeburg. Les pupes diapausantes ont besoin d’une période de froid à 0°C, 5°C ou à l’extérieur (≤0°C) d’environ 15 semaines afin d’induire la diapause. Un séjour pour une période plus longue ou à une température plus haute a raccourci la durée de morphogénèse ou d’émergence. Le pourcentage d’émergence de H. testaceipes n’a pas varié avec la durée du séjour au froid. Après un séjour à 0°C, les pupes maintenues à 21°C sous 16 h de photophase ont atteint le 50% d’émergence plus tôt que celles maintenues à la même température sous 12 h de photophase. La photopériode n’a pas affecté le pourcentage ou la durée d’émergence du parasitoïde. Le seuil thermique de développement des pupes a été estimé à 9°C sans égard au sexe ou à l’espèce d’hôte. La constante thermique n’a pas varié en fonction du dexe du parasitoïde, mais différait significativement entre l’hôte Phyllonorycter ringoniella Matsumura (237 DJ) et P. blancardella (F.) (202 DJ). La température entre 11 et 29°C n’a pas affecté le pourcentage et la durée d’émergence des pupes d’hivernement, dont les valeurs étaient de 75,5% et 2,4 jours sur P. ringoniella et de 86,2% et 1,7 jour sur P. blancardella. Ces résultats indiquent que H. testaceipes accepte P. blancardella comme hôte et que la synchronie de son développement avec cet hôte sera bonne en Ontario.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11: 431438.CrossRefGoogle Scholar
Chew, V. 1976. Comparing treatment means: a compendium. HortScience 11: 348357.CrossRefGoogle Scholar
Coaker, T.H., and Wright, D.W.. 1963. The influence of temperature on the emergence of the cabbage root fly Erioischia brassicae (Bouch.) from overwintering pupae. Ann. appl. Biol. 52: 337343.CrossRefGoogle Scholar
Cruz, Y.P. 1986. Development of the polyembryonic parasite Copidosomopsis tanytmemus (Hymenoptera: Encyrtidae). Ann. ent. Soc. Am. 79: 121127.CrossRefGoogle Scholar
Dutcher, J.D., and Howitt, A.J.. 1978. Bionomics and control of Lithocolletis blancardella in Michigan. J. econ. Ent. 71: 736738.CrossRefGoogle Scholar
Herbert, H.J., and McRae, K.B.. 1983. Effect of temperature on the emergence of overwintering Phyllonorycter blancardella (Lepidoptera: Gracillariidae) and its parasite Apanteles ornigis (Hymenoptera: Braconidae) in Nova Scotia. Can. Ent. 115: 12031208.CrossRefGoogle Scholar
Johnson, E.F., Laing, J.E., and Trottier, R.. 1976. The seasonal occurrence of Lithocolletis blancardella (Gracillariidae), and its major natural enemies in Ontario apple orchards. Proc. ent. Soc. Ont. 107: 3145.Google Scholar
Johnson, E.F., Trottier, R., and Laing, J.E.. 1979. Degree-day relationships to the development of Lithocolletis blancardella (Lepidoptera: Gracillariidae) and its parasite Apanteles ornigis (Hymenoptera: Braconidae). Can. Ent. 111: 11771184.CrossRefGoogle Scholar
Laing, J.E., and Heraty, J.M.. 1984. The use of degree-days to predict emergence of the apple maggot, Rhagoletis pomonella (Diptera: Tephritidae), in Ontario. Can. Ent. 116: 11231129.CrossRefGoogle Scholar
McLeod, D.G.R., and Driscoll, G.R.. 1967. Diapause in the cabbage maggot, Hylemya brassicae (Diptera: Anthomyiidae). Can. Ent. 99: 890893.CrossRefGoogle Scholar
McLeod, D.G.R., Whistlecraft, J.W., and Harris, C.R.. 1985. An improved rearing procedure for the carrot rust fly (Diptera: Psilidae) with observations on life history and conditions controlling diapause induction and termination. Can. Ent. 117: 10171024.CrossRefGoogle Scholar
Morris, R.F., and Fulton, W.G.. 1970. Models for the development and survival of Hyphantria cunea in relation to temperature and humidity. Mem. ent. Soc. Can. 70. 60 pp.Google Scholar
Neilson, W.T.A. 1962. Effects of temperature on development of overwintering pupae of the apple maggot, Rhagoletis pomonela (Walsh). Can. Ent. 94: 924928.CrossRefGoogle Scholar
Perry, J.N. 1986. Multiple-comparison procedures: a dissenting view. J. econ. Ent. 79: 11491155.CrossRefGoogle ScholarPubMed
Pottinger, R.P., and LeRoux, E.J. 1971. The biology and dynamics of Lithocolletis blancardella (Lepidoptera: Gracillariidae) on apple in Quebec. Mem. ent. Soc. Can. 77. 437 pp.Google Scholar
Pree, D.J., Hagley, E.A.C., Simpson, C.M., and Hikichi, A.. 1980. Resistance of the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae), to organophoshorus insecticides in southern Ontario. Can. Ent. 112: 469474.CrossRefGoogle Scholar
Pree, D.J., Marshall, D.B., and Archibald, D.E.. 1986. Resistance to pyrethroid insecticides in the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae), in southern Ontario. J. econ. Ent. 79: 318322.CrossRefGoogle Scholar
Steel, R.G.D., and Torrie, J.H.. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed. McGraw-Hill Book Company. 633 pp.Google Scholar
Stoner, A., and Weeks, R.E.. 1974. Copidosoma truncatellum: effect of temperature on the developmental rate, duration of emergence, and longevity. Environ. Ent. 3: 957960.CrossRefGoogle Scholar
Tauber, M.J., and Tauber, C.A.. 1976. Insect seasonality: diapause maintenance, termination and postdiapause development. A. Rev. Ent. 21: 81107.CrossRefGoogle Scholar
Trimble, R.M. 1983. Diapause termination and the thermal requirements for postdiapause development in six Ontario populations of the spotted tentiform leafminer, Phyllonorycter blancardella (Lepidoptera: Gracillariidae). Can. Ent. 115: 387392.CrossRefGoogle Scholar
Yeargan, K.V., and Braman, S.K.. 1986. Life history of the parasite Diolcogaster facetosa (Weed) (Hymenoptera: Braconidae) and its behavioral adaptation to the defensive response of a lepidopteran host. Ann. ent. Soc. Am. 79: 10291033.CrossRefGoogle Scholar