Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-10T07:19:01.587Z Has data issue: false hasContentIssue false

Effect of spatial scale on habitat use of Bolitotherus cornutus (Coleoptera: Tenebrionidae)

Published online by Cambridge University Press:  02 April 2012

Sonja Teichert
Affiliation:
Centre for Wildlife and Conservation Biology, Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada B4P 2R6
Soren Bondrup-Nielsen*
Affiliation:
Centre for Wildlife and Conservation Biology, Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada B4P 2R6
*
1Corresponding author (e-mail: soren.bondrup-nielsen@acadiau.ca).

Abstract

The habitat of Bolitotherus cornutus Panzer consists primarily of sporophores of the shelf fungus Fomes fomentarius (L.:Fr.) J. Kickx fil. Each sporophore is discrete and often several are present on a single dead log or standing snag, especially of paper birch (Betula papyrifera Marsh.). An exploratory approach was used to examine habitat use at three scales (the single sporophore, a single log supporting up to several sporophores, and a group of logs supporting sporophores) by modeling incidence of adult B. cornutus. Sporophore volume and decay were important for the beetles at all scales. Patches containing a variety of states of sporophores from alive to dead and decomposing are probably most suitable to B. cornutus. Results are compared with those for the related European beetle Bolitophagus reticulatus (L.), which is similar ecologically and also occupies F. fomentarius sporophores.

Résumé

L'habitat de Bolitotherus cornutus Panzer est constitué principalement des sporophores de l'amadouvier Fomes fomentarius (L.:Fr.) J. Kickx fil. Chaque sporophore est séparé et il peut y en avoir plusieurs sur un même arbre tombé ou sur un même tronc mort dressé, particulièrement de bouleau à papier (Betula papyrifera Marsh.). Nous avons utilisé une approche exploratoire à trois échelles (un seul sporophore, un seul tronc couvert d'un à plusieurs sporophores, un groupe de troncs possédant des sporophores) pour faire un modèle de la fréquence des adultes de B. cornutus. Le volume et la décomposition des sporophores sont d'importance pour les coléoptères à toutes les échelles. Des parcelles contenant des sporophores de diverses conditions, vivants et en voie de décomposition, sont probablement les plus propices à B. cornutus. Nous comparons nos résultats avec ceux qui ont été obtenus chez le coléoptère européen apparenté Bolitophagus reticulatus (L.) qui possède une écologie similaire et qui vit aussi dans les sporophores de F. fomentarius.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, J.H., and Kodric-Brown, A. 1977. Turnover rates in insular biogeography: effect of immigration on extinction. Ecology, 58: 445449.CrossRefGoogle Scholar
Brown, L., Macdonell, J., and Fitzgerald, V.J. 1985. Courtship and female choice in the horned beetle, Bolitotherus cornutus (Panzer) (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America, 78: 423427.CrossRefGoogle Scholar
Conner, J. 1989. Density-dependent sexual selection in the fungus beetle, Bolitotherus cornutus. Evolution, 43: 13781386.CrossRefGoogle ScholarPubMed
Gehrken, U., Strømme, A., Lundheim, R., and Zachariassen, K.E. 1991. Inoculative freezing in overwintering tenebrionid beetle, Bolitophagus reticulatus Panz. Journal of Insect Physiology, 37: 683687.CrossRefGoogle Scholar
Gilpin, M. 1987. Spatial structure and population vulnerability. In Viable populations for conservation. Edited by Soulé, M.E.. Cambridge Press, Cambridge, Massachusetts.Google Scholar
Grove, S.J. 2002. Saproxylic insect ecology and sustainable management of forests. Annual Review of Ecology and Systematics, 33: 123.CrossRefGoogle Scholar
Hanski, I. 1994. Spatial scale, patchiness and population dynamics on land. Philosophical Transactions of the Royal Society of London B Biological Sciences, 43: 1925.Google Scholar
Hanski, I., and Thomas, C.D. 1994. Metapopulation dynamics and conservation: a spatially explicit model applied to butterflies. Biological Conservation, 68: 167180.CrossRefGoogle Scholar
Jonsell, M., Norlander, G., and Ehnström, B. 2001. Substrate associations of insects breeding in fruiting bodies of wood-decaying fungi. Ecological Bulletins, 49: 173194.Google Scholar
Kehler, D., and Bondrup-Nielsen, S. 1999. Effects of isolation on the occurrence of a fungivorous forest beetle (Bolitotherus cornutus Panzer) at different spatial scales in fragmented and continuous forests. Oikos, 84: 3543.CrossRefGoogle Scholar
Kindvall, O., and Ahlén, I. 1992. Geometrical factors and metapopulation dynamics of the bush cricket, Metrioptera bicolor Philippi (Orthoptera: Tettigoniidae). Conservation Biology, 6: 520529.CrossRefGoogle Scholar
Kotliar, N.B., and Wiens, J.A. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos, 59: 253260.CrossRefGoogle Scholar
Liles, M.P. 1956. A study of the life history of the forked fungus beetle, Bolitotherus cornutus (Panzer). Ohio Journal of Science, 56: 329337.Google Scholar
MathSoft. 1998. S-PLUS 4 guide to statistics. Data Analysis Products Division, MathSoft, Seattle, Washington.Google Scholar
McCullagh, P., and Nedler, J.A. 1989. Generalized linear models. 2nd ed. Chapman and Hall, London.CrossRefGoogle Scholar
Midtgaard, F., Rukke, B.A., and Sverdrup-Thygeson, A. 1996. Habitat selection of Bolitophagus reticulatus (L.) (Coleoptera, Tenebrionidae) inhabiting tinder fungus (Fomes fomentarius) in three boreal forest areas. In The significance of fragmentation of boreal forest for the occurrence of selected Coleoptera. Edited by Midtgaard, F.. Ph.D. thesis, University of Oslo, Norway. pp. 130.Google Scholar
Nilsson, T. 1997. Survival and habitat preferences of Bolitophagus reticulatus. Ecological Entomology, 22: 8289.CrossRefGoogle Scholar
Pace, A.E. 1967. Life history and behavior of a fungus beetle, Bolitotherus cornutus (Tenebrionidae). Occasional Papers of the Museum of Zoology University of Michigan, 653: 115.Google Scholar
Rukke, B.A., and Midtgaard, F. 1998. The importance of scale and spatial variables for the fungivorous beetle Bolitophagus reticulatus (Coleoptera, Tenebrionidae) in a fragmented forest. Ecography, 21: 561572.CrossRefGoogle Scholar
Schaffer, M.L. 1987. Minimum viable populations: coping with uncertainty. In Viable populations for conservation. Edited by Soulé, M.E.. Cambridge University Press, Cambridge, Massachusetts. pp. 6069.Google Scholar
Schoener, T.W., and Spiller, D.A. 1987. High population persistence in a system with high turnover. Nature (London), 330: 474477.CrossRefGoogle Scholar
Starzomski, B.M., and Bondrup-Nielsen, S. 2002. Analysis of movement and the consequence for metapopulation structure of the forked fungus beetle, Bolitotherus cornutus (Tenebrionidae). Ecoscience, 9: 2027.CrossRefGoogle Scholar
Whitlock, M.C. 1992. Nonequilibrium population structure in the forked fungus beetle: extinction, colonization, and the genetic variance among populations. American Naturalist, 139: 119127.CrossRefGoogle Scholar
Whitlock, M.C. 1993. Lack of correlation between heterozygosity and fitness in forked fungus beetles. Heredity, 70: 574581.CrossRefGoogle Scholar
Whitlock, M.C. 1994. Fission and the genetic variance among populations: the changing demography of forked fungus beetle populations. American Naturalist, 143: 820829.CrossRefGoogle Scholar
Wiens, J.A. 1989. Spatial scaling in ecology. Functional Ecology, 3: 385397.CrossRefGoogle Scholar
Wiens, J.A., Stenseth, N.C., Van Horne, B., and Ims, R.A. 1993. Ecological mechanisms and landscape ecology. Oikos, 66: 369380.CrossRefGoogle Scholar