Hostname: page-component-6d856f89d9-jhxnr Total loading time: 0 Render date: 2024-07-16T03:20:05.735Z Has data issue: false hasContentIssue false

Multiannual infestation patterns of grapevine plant inhabiting Scaphoideus titanus (Hemiptera: Cicadellidae) leafhoppers

Published online by Cambridge University Press:  13 September 2013

Ivo E. Rigamonti*
Affiliation:
DeFENS, Università degli Studi di Milano. Via G. Celoria, 2, I-20133 Milan, Italy
Valeria Trivellone
Affiliation:
Research Station Agroscope Changins – Wädenswil ACW, Centro di Ricerca di Cadenazzo (TI). A Ramél, 18, CH-6593 Cadenazzo, Switzerland
Mauro Jermini
Affiliation:
Research Station Agroscope Changins – Wädenswil ACW, Centro di Ricerca di Cadenazzo (TI). A Ramél, 18, CH-6593 Cadenazzo, Switzerland
Daniele Fuog
Affiliation:
Syngenta Crop Protection AG. Postfach 4002 Basel, Switzerland
Johann Baumgärtner
Affiliation:
Center for the Analysis of Sustainable Agricultural Systems (CASAS), Kensington (CA) 94707 United States of America
*
1Corresponding author (e-mail: ivo.rigamonti@unimi.it).

Abstract

The Nearctic leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae) was accidentally introduced in Europe, where it became the vector of the ‘Candidatus Phytoplasma vitis’ phytoplasma causing the ‘Flavescence dorée’ disease of grapevine plants. A time-varying distributed delay model, simulating the successive occurrences of egg hatching, nymph presence, and adult emergence, is extended here to represent multi-generation infestation patterns of grapevine plants inhabited by eggs, nymphs, and adults. The model extension includes intrinsic mortality, mortality caused by plant dormancy, and low temperatures, development of diapausing and post-diapausing eggs, fecundity rates, and adult longevity. Field observations and published data were used to estimate parameters. The model was validated with five years canopy infestation data from five vineyards not subjected to insecticide treatments and found to have satisfactory explicative and predictive qualities. The model output is most sensitive to a 10% variation in the upper threshold and in the shape parameters of the survivorship function and least sensitive to a 10% variation in the shape parameters of the development function and the survivorship level. Recommendations are made to take into account other factors than temperature and plant phenology and include a wider geographical area in further model development.

Résumé

La cicadelle néarctique Scaphoideus titanus Ball (Hemiptera: Cicadellidae) a été introduite accidentellement en Europe dans les années ‘50, où elle est devenue le vecteur du « Candidatus Phytoplasma vitis » responsable de la maladie de Flavescence dorée de la vigne. Un modèle de délai distribué dans le temps (time-varying distributed delay model), simulant les évènements successifs des éclosions, de la présence des stades juvéniles et de l’émergence des adultes, a été étendu pour représenter les niveaux d'infestation multi-générationnels de la vigne colonisée par des œufs, des nymphes et des adultes. L'extension du modèle inclut la mortalité intrinsèque, la mortalité causée par la dormance de la plante et les basses températures, le développement des œufs diapausants et post-diapausants, les taux de fécondité et la longévité des adultes. Les observations au champ et les données publiées ont servi de base pour l'estimation des paramètres du modèle. Le modèle a été validé avec les données de cinq années d'infestation de la haie foliaire de cinq vignobles sans traitements insecticides et il a montré des qualités explicatives et prédictives satisfaisantes. Le résultat du modèle est plus sensible à une variation de 10% dans le seuil supérieur et dans les paramètres de forme de la fonction de survie et moins sensible à une variation de 10% dans les paramètres de forme de la fonction de développement et du niveau de survie. Des recommandations sont faites pour prendre en compte d'autres facteurs que la température et la phénologie de la plante et inclure un plus large éventail de zones géographiques pour un développement ultérieur du modèle.

Type
Insect Management
Copyright
Copyright © Entomological Society of Canada 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Subject editor: Rob Johns

References

Abkin, M.H. Wolf, C. 1976. Distributed delay routines. CLASS Document No. 8. Department of Agricultural Economics, Michigan State University, East Lansing, Michigan, United States of America.Google Scholar
Arthur, F.H., Yang, Y., Wilson, L.T. 2011. Use of a web-based model for aeration management in stored rough rice. Journal of Economic Entomology, 104: 702708. doi: 10.1603/EC10290.Google Scholar
Avremov, Z., Ivanova, I., Laginova, M. 2011. Screening for phytoplasma presence in leafhoppers and planthoppers collected in Bulgarian vineyards. Bulletin of Insectology, Supplement, 64: S115S116.Google Scholar
Baumgärtner, J., Gutierrez, A.P., Pesolillo, S., Severini, M. 2012. A model for the overwintering process of European grapevine moth Lobesia botrana (Denis & Schiffermüller) (Lepidoptera, Tortricidae) populations. Journal of Entomological and Acarological Research, 44: 816.Google Scholar
Bianchi, G., Baumgärtner, J., Delucchi, V., Rahalivavololona, N. 1990. Modèle de population pour la dynamique de Maliarpha separatella Ragonot (Pyralidae, Phycitinae) dans les rizières du lac Alaotra. Journal of Applied Entomology, 110: 384397. doi: 10.1111/j.1439-0418.1990.tb00137.x.Google Scholar
Bonfils, J. Schvester, D. 1960. Les cicadelles (Homoptera: Auchenorrhyncha) dans leurs rapports avec la vigne dans le Sud-Ouest de la France. Annales des Epiphyties, 11: 325336.Google Scholar
Bressan, A., Girolami, V., Boudon-Padieu, E. 2005. Reduced fitness of the leafhopper vector Scaphoideus titanus exposed to Flavescence dorée phytoplasma. Entomologia Experimentalis et Applicata, 115: 283290. doi: 10.1111/j.1570-7458.2005.00240.x.Google Scholar
Brière, J.F., Pracros, P., Le Roux, A.I., Pierre, J.S. 1999. A novel rate model of temperature-dependent development for arthropods. Environmental Entomology, 28: 2229.CrossRefGoogle Scholar
Budinščak, Ž., Križanac, I., Mikec, I., Seljak, G., Škorić, D. 2005. Vektori fitoplazmi vinove loze u Hrvatskoj. Glasilo biljne zaštite, 5: 240245.Google Scholar
Carle, P. Schvester, D. 1964. Nouvelle mise au point sur la lutte contre “Scaphoideus littoralis” Ball., Cicadelle vectrice de la Flavescence dorée de la Vigne. Revue de Zoologie agricole et appliquée, 63: 107114.Google Scholar
Chireceanu, C., Ploaie, P.G., Gutue, M., Nicolae, I., Stan, C., Comsa, M. 2011. Detection of the Auchenorrhyncha fauna associated with grapevine displaying yellows symptoms in Romania. Acta phytopathologica et entomologica hungarica, 46: 253260. doi: 10.1556/APhyt.46.2011.2.9.Google Scholar
Chuche, J. Thièry, D. 2012. Egg incubation temperature differently affects female and male hatching dynamics and larval fitness in a leafhopper. Ecology and Evolution, 2: 732739. doi: 10.1002/ece3.89.Google Scholar
Commonwealth Agricultural Bureau International 1992. Scaphoideus titanus [Distribution map]. Distribution Maps of Plant Pests, Map 533.Google Scholar
Cravedi, P., Mazzoni, E., Cervato, P. 1993. Osservazioni sulla biologia di Scaphoideus titanus Ball (Homoptera: Cicadellidae). Redia, 76: 5770.Google Scholar
Curry, G.L. Feldman, R.M. 1987. Mathematical foundations of population dynamics. Monograph series 3. Texas Engineering Experiment Station. Texas A&M University Press, College Station, Texas, United States of America.Google Scholar
Der, Z., Koczor, S., Zsolnai, B., Ember, I., Kolber, M., Bertaccini, A., et al. 2007. Scaphoideus titanus identified in Hungary. Bulletin of Insectology, 60: 199200.Google Scholar
De Sousa, E., Casati, P., Cardoso, F., Baltazar, C., Durante, G., Quaglino, F., et al. 2010. Flavescence dorée phytoplasma affecting grapevine (Vitis vinifera) newly reported in Portugal. Plant Pathology, 59: 398. doi: 10.1111/j.1365-3059.2009.02130.x.Google Scholar
Di Cola, G., Gilioli, G., Baumgärtner, J. 1999. Mathematical models for age-structured population dynamics. In Ecological entomology, 2nd edition . Edited by C.B. Huffaker and A.P. Gutierrez. John Wiley and Sons, New York, New York, United States of America. Pp. 503534.Google Scholar
Duduk, B., Botti, S., Ivanović, M., Krstić, B., Dukić, N., Bertaccini, A. 2004. Identification of phytoplasmas associated with grapevine yellows in Serbia. Journal of Phytopathology, 152: 575579. doi: 10.1111/j.1439-0434.2004.00898.x.Google Scholar
European and Mediterranean Plant Protection Organization / Commonwealth Agricultural Bureau International 1996. Grapevine flavescence dorée phytoplasma. In Quarantine pests for Europe, 2nd edition. Edited by I.M. Smith, D.G. McNamara, P.R. Scott, and M. Holderness. Commonwealth Agricultural Bureau International, Wallingford, United Kingdom. Pp. 10131021.Google Scholar
Fouque, F. Baumgärtner, J. 1996. Simulating development and survival of Aedes vexans (Diptera: Culicidae) preimaginal stages under field conditions. Journal of Medical Entomology, 33: 3238.Google Scholar
Gugerli, P., Besse, S., Colombi, L., Ramel, M.-E., Rigotti, S., Cazelles, O. 2006. First outbreak of “flavescence dorée” (FD) in Swiss vineyards. In Extended abstracts of the 15th meeting of the international council for the study of virus and virus-like diseases of the grapevine (ICVG). South African Society for Enology and Viticulture, Stellenbosch, South Africa. Pp. 9698. Available from http://www.icvg.ch/data/extabstr2006part1.pdf [accessed 17 September 2012].Google Scholar
Gutierrez, A.P. 1996. Applied population ecology: a supply-demand approach. John Wiley, New York, New York, United States of America.Google Scholar
Gutierrez, A.P., Ponti, L., Cooper, M.L., Gilioli, G., Baumgärtner, J., Duso, C. 2012. Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. & Schiff.) in California. Agricultural and Forest Entomology, 14: 225238. doi: 10.1111/j.1461-9563.2011.00566.x.Google Scholar
Irimia, N., Ulea, E., Balau, A.M. 2010. Detection of pathogen Flavescence doree phytoplasma in some grapevine varieties using ELISA test. Lucrari Stiintifice, Universitatea de Jasi, Seria Agronomie, 53: 187190.Google Scholar
Jermini, M., Trivellone, V., Cara, C., Baumgärtner, J. 2013. Marrying research and management activities: adaptive management of Grape leafhopper Scaphoideus titanus . International Organisation for Biological and Integrated Control/West Palearctic Regional Section Bulletin, 85: 4956.Google Scholar
Leather, S.R., Walters, K.F.A., Bale, J.S. 1993. The ecology of insect overwintering. Cambridge University Press, Cambridge, United Kingdom.Google Scholar
Logan, J.A., Stinner, R.E., Rabb, R.L., Bacheler, J.S.A. 1979. Descriptive model for predicting spring emergence of Heliothis zea populations in North Carolina. Environmental Entomology, 8: 141146.Google Scholar
Magud, B. Toševski, I. 2004. Scaphoideus titanus Ball (Homoptera, Cicadellidae) nova štetočina u Srbiji. Biljni lekar, Novi Sad, 32: 348352.Google Scholar
Manetsch, T.J. 1976. Time-varying distributed delays and their use in aggregate models of large systems. Institute of Electrical and Electronics Engineers Transactions on Systems, Man and Cybernetics, 6: 547553. doi: 10.1109/TSMC.1976.4309549.Google Scholar
Nechols, J.R., Tauber, M.J., Tauber, C.A., Masaki, S. 1999. Adaptations to hazardous seasonal conditions: dormancy, migrations, and polyphenism. In Ecological Entomology, 2nd edition. Edited by C.B. Huffaker and A.P. Gutierrez. John Wiley and Sons, New York, New York, United States of America. Pp. 159200.Google Scholar
Plant, R.E. Wilson, L.T. 1986. Models for age structured populations with distributed maturation rates. Journal of Mathematical Biology, 23: 247262. doi: 10.1007/BF00276960.Google Scholar
Prevostini, M., Taddeo, A.V., Balac, K., Rigamonti, I., Baumgärtner, J., Jermini, M. 2013. WAMS – an adaptive system for knowledge acquisition and decision support: the case of Scaphoideus titanus . International Organisation for Biological and Integrated Control/West Palearctic Regional Section Bulletin, 85: 5764.Google Scholar
Reisenzein, H. Steffek, R. 2011. First outbreaks of grapevine ‘flavescence dorée’ in Austrian viticulture. Bulletin of Insectology, Supplement, 64: S223S224.Google Scholar
Rigamonti, I.E., Jermini, M., Fuog, D., Baumgärtner, J. 2011. Towards an improved understanding of the dynamics of vineyard-infesting Scaphoideus titanus leafhopper populations for better timing of management activities. Pest Management Science, 67: 12221229. doi: 10.1002/ps.2171.Google Scholar
Rigamonti, I.E., Trivellone, V., Jermini, M., Baumgärtner, J. 2013. Multiannual infestation patterns of grapevine plant canopy inhabiting Scaphoideus titanus Ball leafhoppers. International Organisation for Biological and Integrated Control/West Palearctic Regional Section Bulletin, 85: 4348.Google Scholar
Rykiel, E.J. Jr. 1996. Testing ecological models: the meaning of validation. Ecological Modelling, 90: 229244. doi: 10.1016/0304-3800(95)00152.Google Scholar
Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al. 2008. Global sensitivity analysis. The primer. John Wiley & Sons, New York, New York, United States of America.Google Scholar
Samietz, J., Graf, B., Höhn, H., Schaub, L., Höpli, H.U. 2007. Phenology modelling of major insect pests in fruit orchards from biological basics to decision support: the forecasting tool SOPRA. Bulletin de l'Organisation Européenne et Méditerranéenne pour la Protection des Plantes/European and Mediterranean Plant Protection Organization Bulletin, 37: 255–260. doi: 10.1111/j.1365-2338.2007.01121.x.Google Scholar
Schvester, D., Carle, P., Moutous, G. 1961. Sur la transmission de la Flavescence dorée de la vigne par une Cicadelle. Compte Rendu de l'Academie Agricole Française, 67: 10211024.Google Scholar
Schvester, D., Moutous, G., Carle, P. 1962. Scaphoideus littoralis Ball. (Homopt. Jassidae). Cicadelle vectrice de la Flavescence dorée de la vigne. Revue de Zoologie Agricole et Appliquée, 61: 118131.Google Scholar
Seljak, G. Orešek, E. 2007. Prvi pojavi zlate trsne rumenice v Sloveniji: kako naprej? In Lectures and papers presented at the 8th Slovenian conference on plant protection, Radenci, Slovenia, 6–7 March 2007. Edited by J. Maček. Plant Protection Society of Slovenia, Ljubljana, Slovenia. Pp. 144151. Available from http://www.dvrs.bf.uni-lj.si/spvr/2007/23seljak_07.pdf [accessed 17 September 2012].Google Scholar
Šeruga Musić, M., Škorić, D., Haluška, I., Križanac, I., Plavec, J., Mikec, I. 2011. First report of flavescence dorée-related phytoplasma affecting grapevines in Croatia. Plant Disease, 95: 353. doi: 10.1094/PDIS-09-10-0664.Google Scholar
Severini, M. 2009. Base matematica del modello a ritardo variabile (time invariant delay). In Modelli per la difesa delle piante. Monografie e articoli scientifici presentate alle quarte giornate di studio su metodi numerici, statistici e informatici nella difesa delle colture agrarie e forestali: ricerca ed applicazione, Viterbo, Italy, marzo 2007. Edited by M. Severini and S. Pesolillo. Aracne, Rome, Italy. Pp. 1357.Google Scholar
Steffek, R., Reisenzein, H., Zeisner, N. 2007. Analysis of the pest risk from grapevine flavescence dorée phytoplasma to Austrian viticulture. Bulletin de l'Organisation Européenne et Méditerranéenne pour la Protection des Plantes/European and Mediterranean Plant Protection Organization Bulletin, 37: 191–203. doi: 10.1111/j.1365-2338.2007.01102.x.Google Scholar
Tauber, M.J. Tauber, C.A. 1976. Insect seasonality: diapause maintenance, termination, and post-diapause development. Annual Review of Entomology, 21: 81107. doi: 10.1146/annurev.en.21.010176.000501.Google Scholar
Tauber, M.J., Tauber, C.A., Masaki, S. 1986. Seasonal adaptations of insects. Oxford University Press, New York, New York, United States of America.Google Scholar
Trivellone, V., Baumgärtner, J., Linder, C., Cara, C., Delabays, N., Jermini, M. 2011. Spatio-temporal distribution of Scaphoideus titanus Ball in Swiss vineyards. International Organisation for Biological and Integrated Control/West Palearctic Regional Section meeting of the working group “integrated protection and production in viticulture”, Lacanau, 2–5 October 2011 [online]. Available from https://colloque4.inra.fr/var/iobc_wprs_bordeaux/storage/fckeditor/file/Trivelone.pdf [accessed 10 September 2012].Google Scholar
Vansickle, J. 1977. Attrition in distributed delay models. Institute of Electrical and Electronics Engineers Transactions on Systems, Man and Cybernetics, 7: 635638. doi: 10.1109/TSMC.1977.4309800.Google Scholar
Vidano, C. 1964. Scoperta in Italia dello Scaphoideus littoralis Ball cicalina americana collegata alla flavescence dorée della vite. L'Italia agricola, 101: 10311049.Google Scholar
Wearing, H.J., Rohani, P., Cameron, T.C., Sait, S.M. 2004. The dynamical consequences of developmental variability and demographic stochasticity for host-parasitoid interactions. The American Naturalist, 164: 543558. doi: 10.1086/424040.Google Scholar
Welch, S.M., Croft, B.A., Brunner, J.F., Michels, M.F. 1978. PETE: an extension phenology modeling system for management of multi-species pest complex. Environmental Entomology, 7: 482494.Google Scholar
Wermelinger, B., Baumgärtner, J., Gutierrez, A.P. 1991. A demographic model of assimilation and allocation of carbon and nitrogen in grapevines. Ecological Modelling, 53: 126. doi: 10.1016/0304-3800(91)90138-Q.Google Scholar
Wermelinger, B., Candolfi, M.P., Baumgärtner, J. 1992. A model of the European red mite (Acari, Tetranychidae) population dynamics and its linkage to grapevine growth and development. Journal of Applied Entomology, 114: 155166. doi: 10.1111/j.1439-0418.1992.tb01110.x.Google Scholar
Yang, Y., Wilson, L.T., Wang, J. 2010. Development of an automated climatic data scraping, filtering and display system. Computers and Electronics in Agriculture, 71: 7787. doi: 10.1016/j.compag.2009.12.006.Google Scholar
Zeisner, N. 2005. Augen auf im Süden: Amerikanische Zikaden im Anflug. Der Winzer, 5: 2021.Google Scholar