Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T16:32:49.720Z Has data issue: false hasContentIssue false

POST-EMBRYONIC GROWTH OF THE COLLEMBOLANS FOLSOMIA CANDIDA AND XENYLLA GRISEA AT THREE TEMPERATURES

Published online by Cambridge University Press:  31 May 2012

Dan L. Johnson
Affiliation:
Institute of Animal Resource Ecology, University of British Columbia, Vancouver V6T 1W5
W. G. Wellington
Affiliation:
Institute of Animal Resource Ecology, University of British Columbia, Vancouver V6T 1W5

Abstract

The relationship between body size and age in two species of Collembola, Folsomia Candida and Xenylla grisea, was studied in three temperature regimes. Power curves were used to describe length as a function of age for each species-temperature combination. Growth parameters (slopes of the log-log curves) and length at hatch (log intercepts) were compared by multiple regression. There was a strong non-linear effect of temperature on growth in the range normally encountered.

Résumé

Nous avons étudié la relation entre l’âge et la taille corporelle chez deux espèces de collembole, Folsomia Candida et Xenylla grisea. Les trois régimes de température utilisés font partie de l’étendue à laquelle ces espèces sont normalement exposées. Pour chaque combinaison d’espèce et de température, des courbes géométriques sont utilisées pour définir la longueur en fonction de l’âge. Nous avons ensuite comparé par régression multiple les paramètres de croissance (pentes des courbes log-log) et la longueur à la naissance (log des points d’intersection). Nous avons observé un effet non-linéaire important de la température sur la croissance.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrell, I. 1949. Studies on the post-embryonic development of Collemboles. Ark. Zool. 41A: 135.Google Scholar
Bailey, C. G. 1976. Temperature effects on non-diapause development in Mamestra configurata (Lepidoptera: Noctuidae). Can. Ent. 108: 13391344.CrossRefGoogle Scholar
Britt, N. W. 1951. Observations on the life history of the collembolan Achorutes armatus. Trans. Am. microsc. Soc. 70: 119132.CrossRefGoogle Scholar
Christiansen, K. 1964. Bionomics of Collembola. A. Rev. Ent. 9: 147178.CrossRefGoogle Scholar
Choudhuri, D. K. and Bhattacharyya, B.. 1978. On the rate of post-embryonic growth in Lobella (Lobella) maxillaris Yosii, 1966 (Collembola: Insecta). Rev. Ecol. Biol. 15: 537549.Google Scholar
Cunia, T. 1973. Dummy variables and some of their uses in regression analysis. International Union of Forest Research Organizations. In Cunia, T., Kuusela, K., and Nash, A. J. (Eds.), Proc. of the June 1973 Meeting, Nancy, France. Vol. 1, 146 pp.Google Scholar
Curry, G. L., Feldman, R. M., and Smith, K. C., 1978. A stochastic model of a temperature-dependent population. Theor. Pop. Biol. 13: 197213.CrossRefGoogle ScholarPubMed
Davidson, J. 1944. On the relationship between temperature and the rate of development of insects at constant temperature. J. Anim. Ecol. 13: 2638.CrossRefGoogle Scholar
Dover, M. J., Croft, B. A., Welch, S. M., and Tummala, R. L.. 1979. Biological control of Panonychus ulmi (Acarina: Tetranychidae) by Amblyseius fallacis (Acarina:Phytoseiidae) on apple: a predatorprey model. Environ. Ent. 8: 282292.CrossRefGoogle Scholar
Gage, S. H., Mukerji, M. K., and Randell, R. L.. 1976. A predictive model for seasonal occurrence of three grasshopper species in Saskatchewan (Orthoptera: Acrididae). Can. Ent. 108: 245253.CrossRefGoogle Scholar
Gilbert, N., Gutierrez, A. P., Frazer, B. D., and Jones, R. E.. 1976. Ecological relationships. W. H. Freeman, San Francisco.Google Scholar
Green, C. D. 1964. The life history and fecundity of Folsomia candida (Willem) var. distincta (Bagnall) (Collembola:Isotomidae). Proc. R. ent. Soc. Lond. (A) 39: 125128.Google Scholar
Guppy, J. C. and Harcourt, D. G.. 1978. Effects of temperature on development of the immature stages of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae). Can. Ent. 110: 257263.CrossRefGoogle Scholar
Herne, D. C. and Lund, C. T.. 1979. Simulation model of European red mite population dynamics developed for a mini-computer. Can. Ent. 111: 499507.CrossRefGoogle Scholar
Hutson, B. R. 1978. Influence of pH, temperature and salinity on the fecundity and longevity of four species of Collembola. Pedobiologia 18(3): 163179.CrossRefGoogle Scholar
Johnson, E. F., Trottier, R., and Laing, J. E.. 1979. Degree-day relationships to the development of Lithocolletis blancardella (Lepidoptera: Gracillariidae) and its parasite Apanteles ornigis (Hymenoptera: Braconidae). Can. Ent. 111: 11771184.CrossRefGoogle Scholar
Joose, E. N. G. and Veltkamp, E.. 1970. Some aspects of growth, moulting and reproduction in five species of surface dwelling Collembola. Neth. J. Zool. 20: 315328.Google Scholar
Kerlinger, F. N. and Pedhazur, E. J.. 1973. Multiple regression in behavioral research. Holt, Rinehart and Winston, New York.Google Scholar
Logan, J. A., Wollkind, D. J., Hoyt, S. C., and Tanigoshi, L. K.. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Ent. 5: 11331140.CrossRefGoogle Scholar
Marshall, V. G. and Kevan, D. K. McE.. 1962. Preliminary observations on the biology of Folsomia candida Willem, 1902 (Collembola: Isotomidae). Can. Ent. 94: 575586.CrossRefGoogle Scholar
Medawar, P. B. 1945. Size, shape and age. pp. 157187in Clark, W. E. LeGros and Medawar, P. B. (Eds.), Essays on growth and form. Clarenden Press, Oxford.Google Scholar
Milne, S. 1960. Studies on the life histories of various species of arthropleone Collembola. Proc. R. Soc. Lond. (A) 35: 133140.Google Scholar
Morris, R. F. and Fulton, W. C.. 1970. Models for the development and survival of Hyphantria cunea in relation to temperature and humidity. Mem. ent. Soc. Can. 70. 70 pp.Google Scholar
Nair, K. R. 1964. The fitting of growth curves. pp. 119132in Kempthorne, O., Bancroft, T. A., Gowen, J. W., and Lush, J. L. (Eds.), Statistics and mathematics in biology. Hafner, New York.Google Scholar
Neter, J. and Wasserman, Wm.. 1974. Applied linear statistical models. Richard D. Irwin, Homewood, Ill.Google Scholar
Snider, R. M. and Butcher, J. W.. 1973. The life history of Folsomia candida (Willem) (Collembola: Isotomidae) relative to temperature. Great Lakes Ent. 6: 97106.Google Scholar
Southwood, T. R. E. 1978. Ecological methods. Halsted Press, New York. 2nd ed.Google Scholar
Stinner, R. E., Butler, G. D. Jr., Bacheler, J. S., and Tuttle, C.. 1975. Simulation of temperature-dependent development in population dynamics models. Can. Ent. 107: 11671174.CrossRefGoogle Scholar
Stinner, R. E., Gutierrez, A. P., and Butler, G. D. Jr., 1974. An algorithm for temperature-dependent growth rate simulation. Can. Ent. 106: 519524.CrossRefGoogle Scholar
Tanigoshi, L. K. and Logan, J. A.. 1979. Tetranychid development under variable temperature regimes. Recent Advances in Acarol. 1: 165175.CrossRefGoogle Scholar
Taylor, R. G. and Harcourt, D. G.. 1978. Effects of temperature on developmental rate of the immature stages of Crioceris asparagi (Coleoptera: Chrysomelidae). Can. Ent. 110: 5762.CrossRefGoogle Scholar
Usher, M. B. and Stoneman, C. F.. 1977. Folsomia candida — an ideal organism for population studies in the laboratory. J. biol. Educ. 11: 8390.CrossRefGoogle Scholar
Welch, Q. B. 1970. Fitting growth and research data. Growth 34: 293312.Google ScholarPubMed
Zar, J. H. 1974. Biostatistical analysis. Prentice-Hall, Englewood Cliffs N. J.Google Scholar