Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T12:21:22.980Z Has data issue: false hasContentIssue false

REARING AND HOST AGE SUITABILITY OF FANNIA CANICULARIS (L.) (DIPTERA: MUSCIDAE) FOR PARASITIZATION BY MUSCIDIFURAX ZARAPTOR KOGAN AND LEGNER (HYMENOPTERA: PTEROMALIDAE)

Published online by Cambridge University Press:  31 May 2012

J. David Mandeville
Affiliation:
Department of Entomology, University of California, Riverside, California, USA92521
Bradley A. Mullens
Affiliation:
Department of Entomology, University of California, Riverside, California, USA92521
Jeffery A. Meyer
Affiliation:
Department of Entomology, University of California, Riverside, California, USA92521

Abstract

The fecundity and sex ratio of progeny of Muscidifurax zaraptor Kogan and Legner were assessed on <1-day-old to >9-day-old Fannia canicularis (L.) pupae. Two age classes of parasites (1 day old and 2–3 days old) were used. Host age did not significantly affect production of progeny. Mean number of progeny per female increased in both parasite age groups on 3 successive days of host-exposure as the parasites aged: 4.5, 7.4, and 10.4 progeny per female were produced for the 1-day-old parasites and 7.6, 10.4, and 11.8 progeny per female were produced for the 2- to 3-day-old parasites. Sex ratio of progeny was not significantly affected by host age, averaging 77% females (range 63–92%). Mass rearing of F. canicularis on used M. domestica medium is described.

Résumé

Le fécundité et le sexe ratio de la descendance de Muscidifurax zaraptor Kogan and Legner ont été déterminés sur des classes d’âge (1–9 jours), du stade pupe, chez Fannia canicularis (L.). Deux classes d’âge de parasites (1 jour et 2–3 jours) ont été utilisées. L’âge de l’hôte n’a pas affecté de manière significative la production de descendants. Le nombre de descendants par femelle s’est accru avec l’âge du parasite. En effet, pour les deux classes d’âge de parasites, après 3 jours consécutifs d’exposition a l’hôte : 4.5, 7.4, 10.4 descendants par femelle étaient produits pour la classe "1 jour" et 7.6, 10.4, 11.8 descendants par femelle pour la classe "2–3 jours". Le sexe ratio des descendants n’a pas été affecté de manière significative par l’âge de l’hôte, en moyenne la contribution de femelles était de 77% (écart de 63–92%). L’élevage en masse de F. canicularis sur milieu usagé de M. domestica est aussi décrite.

Type
Articles
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.R., and Poorbaugh, J.H.. 1964. A simplified technique for the laboratory rearing of Fannia canicularis. J. econ. Ent. 57: 254256.CrossRefGoogle Scholar
Axtell, R.C. 1968. Integrated house fly control: populations of fly larvae and predaceous mites, Macrocheles muscadomesticae in poultry manure after larvicide treatment. J. econ. Ent. 61: 245249.CrossRefGoogle Scholar
Bailey, D.L. 1970. Forced air for separating pupae of house flies from rearing medium. J. econ. Ent. 63: 331333.CrossRefGoogle Scholar
Beard, R.L. 1964. Pathogenic stinging of house-fly pupae by Nasonia vitripennis (Walker). J. Insect Pathol. 6: 1117.Google Scholar
Brydon, H.W., Kara, J.M., and Fuller, R.J.. 1966. Immature Fannia control in coned poultry droppings determined by its distribution, biology and ecology. In Fly Control Research on Poultry Ranches, Vol. 1. Orange County Health Department Report, Orange County, CA.Google Scholar
Chabora, P.C., and Pimentel, D.. 1966. Effect of host (Musca domestica L.) age on the pteromalid parasite Nasonia vitripennis (Walker). Can. Ent. 98: 12261231.CrossRefGoogle Scholar
Coats, S.A. 1976. Lifecycle and behavior of Muscidifurax zaraptor (Hymenoptera: Pteromalidae). Ann. ent. Soc. Am. 69: 772780.CrossRefGoogle Scholar
Fay, R.W., Kilpatrick, J.W., and Baker, J.T.. 1963. Rearing and isotopic labeling of Fannia canicularis. J. econ. Ent. 56: 6971.CrossRefGoogle Scholar
Fraenkel, G., and Bhaskaran, G.. 1973. Pupariation and pupation in cyclorrhaphous flies (Diptera): terminology and interpretation. Ann. ent. Soc. Am. 66: 418422.CrossRefGoogle Scholar
Gerling, D., and Legner, E.F.. 1968. Developmental history and reproduction of Spalangia cameroni, a parasite of synanthropic flies. Ann. ent. Soc. Am. 61: 14361443.CrossRefGoogle Scholar
Harwood, R.F., and James, M.T.. 1979. Entomology in human and animal health, 7th. ed. Macmillan Publ. Co. 548 pp.Google Scholar
Hwang, Y., Mulla, M.S., and Axelrod, H.. 1978. Attractants for synanthropic flies: ethanol as attractant for Fannia canicularis and other pest flies in poultry ranches. J. Chem. Ecol. 4: 463470.CrossRefGoogle Scholar
Kogan, M., and Legner, E.F.. 1970. A biosystematic revision of the genus Muscidifurax (Hymenoptera: Pteromalidae) with descriptions of four new species. Can. Ent. 102: 12681290.CrossRefGoogle Scholar
Legner, E.F. 1966. Parasites of the house fly and other filth breeding Diptera in southern California. J. econ. Ent. 59: 9991001.CrossRefGoogle Scholar
Legner, E.F. 1972. Observations on hybridization and heterosis in parasitoids of synanthropic flies. Ann. ent. Soc. Am. 65: 254263.CrossRefGoogle Scholar
Legner, E.F. 1979. Reproduction of Spalangia endius, Muscidifurax raptor, and Muscidifurax zaraptor on fresh vs. refrigerated fly hosts. Ann. ent. Soc. Am. 72: 155157.CrossRefGoogle Scholar
Legner, E.F., Bay, E.C., and White, E.B.. 1967. Activity of parasites from Diptera: Musca domestica, Fannia canicularis, and Fannia femoralis at sites in the western Hemisphere. Ann. ent. Soc. Am. 60: 462468.CrossRefGoogle Scholar
Legner, E.F., and Brydon, H.W.. 1966. Suppression of dung inhabiting fly populations by pupal parasites. Ann. ent. Soc. Am. 59: 638651.CrossRefGoogle ScholarPubMed
Legner, E.F., Moore, I., and Olton, G.S.. 1976. Tabular keys & biological notes to common parasitoids of synanthropic Diptera breeding in accumulated animal wastes. Ent. News 87: 113144.Google ScholarPubMed
Legner, E.F., and Olton, G.S.. 1971. The distribution and relative abundance of dipterous pupae and their parasitoids in accumulations of domestic animal manure in the southwestern United States. Hilgardia 40: 505535.CrossRefGoogle Scholar
Lewallen, L.L. 1954. Biological and toxicological studies of the little house fly. J. econ. Ent. 47: 11371141.CrossRefGoogle Scholar
Mayer, R.T., Meola, S.M., Coppage, D.L., and Deloach, J.R.. 1979. The pupal instar of Stomoxys calcitrans: cuticle deposition and chitin synthesis. J. Insect Physiol. 25: 677683.CrossRefGoogle Scholar
Meyer, J.A., and Georghiou, G.P.. 1987. Little house fly resistance to selected insecticides on California poultry facilities. Calif. Agric. 41: 2224.Google Scholar
Moon, R.D., Berry, I.L., and Petersen, J.J.. 1982. Reproduction of Spalangia cameroni Perkins (Hymenoptera: Pteromalidae) on stable fly (Diptera: Muscidae) in the laboratory. J. Kansas ent. Soc. 55: 7785.Google Scholar
Morgan, P.B.LaBrecque, G.C., Weidhaas, D.E., and Patterson, R.S.. 1979. Interrelationship between two species of muscoid flies and the pupal parasite Spalangia endius (Hymenoptera: Pteromalidae). J. Med. Ent. 16: 331334.CrossRefGoogle ScholarPubMed
Morgan, P.B., Weidhaas, D.E., and LaBrecque, G.C.. 1978. Host–parasite relationship of the house fly, Musca domestica L. and the microhymenopteran parasite, Pachycrepoideus vindemiae (Rondani). Southwest. Ent. 3: 176181.Google Scholar
Morgan, P.B., Weidhaas, D.E., and LaBrecque, G.C. 1979. Host parasite relationship of the house fly Musca domestica L. and the microhymenopteran pupal parasite Muscidifurax raptor Girault and Sanders (Diptera: Muscidae and Hymenoptera: Pteromalidae). J. Kansas ent. Soc. 52: 276281.Google Scholar
Mullens, B.A., Meyer, J.A., and Mandeville, J.D.. 1986. Seasonal and diel activity of filth fly parasites (Hymenoptera: Pteromalidae) in caged-layer poultry manure in southern California. Environ. Ent. 15: 5660.CrossRefGoogle Scholar
Patterson, R.S., and Rutz, D.A. (Eds.). 1986. Biological control of muscoid flies. Misc. Publ. ent. Soc. Am. 61. 174 pp.Google Scholar
Rogoff, M.W., Carbrey, E.C., Bram, R.A., Clark, T.B., and Gretz, G.H.. 1975. Transmission of newcastle disease virus by insects: detection in wild Fannia spp. (Diptera: Muscidae). J. Med. Ent. 12: 225227.CrossRefGoogle ScholarPubMed
Rogoff, M.W., Gretz, G.H., Clark, T.B., McDaniel, H.A., and Pearson, J.E.. 1977. Laboratory transmission of exotic newcastle virus by Fannia canicularis (Diptera: Muscidae). J. Med. Ent. 13: 617621.CrossRefGoogle ScholarPubMed
Schmidt, C.D., and Morgan, P.B.. 1978. Parasitism of pupae of the horn fly Haematobia irritans (L.) by Spalangia endius Walker. Southwest. Ent. 3: 6972.Google Scholar
Snedecor, G.W., and Cochran, W.G.. 1980. Statistical Methods, 7th ed. Iowa State University Press, Ames, IA. 507 pp.Google Scholar
Steve, P.C. 1960. Biology and control of the little house fly Fannia canicularis in Massachusetts. J. econ. Ent. 53: 9991004.CrossRefGoogle Scholar
Williams, J.R.P. 1978. An alternative method for the laboratory rearing of Fannia canicularis (L.) (Diptera, Fanniidae). Ent. Mon. Mag. 114: 1719.Google Scholar
Wylie, H.G. 1962. An effect of host age on female longevity and fecundity in Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). Can. Ent. 94: 990993.CrossRefGoogle Scholar
Wylie, H.G. 1963. Some effects of host age on parasitism by Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). Can. Ent. 95: 881886.CrossRefGoogle Scholar
Wylie, H.G. 1964. Effect of host age on the rate of development of Nasonia vitripennis (Walk.) (Hymenoptera: Pteromalidae). Can. Ent. 96: 10231027.CrossRefGoogle Scholar
Wylie, H.G. 1971 a. Observations on intraspecific larval competition in three hymenopterous parasites of fly puparia. Can. Ent. 103: 137142.CrossRefGoogle Scholar
Wylie, H.G. 1971 b. Oviposition restraint of Muscidifurax zaraptor (Hymenoptera: Pteromalidae) on parasitized housefly pupae. Can. Ent. 103: 15371544.CrossRefGoogle Scholar