Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T07:00:31.551Z Has data issue: false hasContentIssue false

Short life cycles in insects and mites1

Published online by Cambridge University Press:  02 April 2012

H.V. Danks
Affiliation:
Biological Survey of Canada (Terrestrial Arthropods), Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4 (e-mail: hdanks@mus-nature.ca

Abstract

Under favourable conditions some species of insects and mites complete development very quickly. This paper considers species with a mean minimum generation time of 15 days or less and tabulates developmental data for many sample species. Such species belong chiefly to a limited number of taxa of small size, notably aphids and several families of mites and parasitoid Hymenoptera. Characteristics of these taxa are reviewed. Even in families containing many species with rapid life cycles, normally many other species lack such rapid development. Very short life cycles depend on phylogeny, strain, rapid development in all stages, small size, rich food, and other habitat features including high temperatures. Within this framework, life cycles are accelerated by reducing elements requiring the investment of resources (size, fecundity, longevity, structural complexity), eliminating instars and even life stages, accelerating development (through lower requirements especially of heat, heat gain by adaptations such as basking, and rapid reproduction), and choosing the most suitable habitats and microhabitats from those available. Mean minimum generation times in insects and mites with coincident adaptations of this sort can be as short as 4 days. Notwithstanding the advantages of rapid development in maximizing the intrinsic rate of natural increase (and hence fitness), most species cannot achieve the highest rates of development. They are constrained not only by resources and intrinsic physiological or phylogenetic patterns but also by variability of conditions and seasonality that can be survived only by interpolating delays or resistant stages.

Résumé

Sous des conditions favorables, certains insectes et acariens complètent leur développement très rapidement. Il est question ici d'espèces qui ont une durée de génération minimale moyenne de 15 jours ou moins et on y trouve des compilations des données de développement pour plusieurs espèces choisies. La plupart de ces espèces appartiennent à un nombre réduit de taxons de petite taille corporelle, particulièrement des pucerons et plusieurs familles d'acariens et d'hyménoptères parasitoïdes. Les caractéristiques de ces taxons sont passés en revue. Même dans les familles qui contiennent plusieurs espèces à cycle biologique rapide, il y a normalement beaucoup d'autres espèces qui n'ont pas ce développement rapide. Les cycles biologiques très courts dépendent de la phylogénie, de la race, d'un développement rapide à tous les stades, d'une taille réduite, d'une nourriture riche et d'autres caractéristiques du milieu, dont des températures élevées. Dans ce cadre, l'accélération du cycle se fait par la réduction des éléments qui requièrent un investissement de ressources (taille, fécondité, longévité, complexité structurelle), l'élimination de stades ou mêmes d'étapes du cycle, l'accélération du développement (par des exigences réduites particulièrement de chaleur, l'acquisition de chaleur par des comportements tels que l'exposition au soleil et la reproduction rapide) et le choix des habitats et des microhabitats les plus appropriés parmi ceux qui sont disponibles. Les durées de génération minimales moyennes chez les insectes et les acariens qui possèdent des combinaisons d'adaptations de ce type peuvent être aussi courtes que 4 jours. Malgré les avantages du développement rapide pour augmenter le taux intrinsèque d'accroissement naturel (et ainsi la fitness), la plupart des espèces n'arrivent pas à atteindre les taux les plus rapides. Elles en sont empêchées non seulement par le manque de ressources et par leurs taux physiologiques et phylogénétiques intrinsèques, mais aussi par la variabilité des conditions et par les variations saisonnières qui exigent des animaux l'insertion dans leur cycle de délais ou de stades résistants pour assurer leur survie.

[Traduit par la Rédaction]

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aalbersberg, Y.K., and Du Torr, F. 1987. Development rate, fecundity and lifespan of apterae of the Russian wheat aphid, Diuraphis noxia (Mordvilko) (Hemiptera: Aphididae), under controlled conditions. Bulletin of Entomological Research, 77: 629635.CrossRefGoogle Scholar
Abbas, M.S.T., and Abou-Zeid, N.A. 1983. Biological studies on Bracon instabilis Marsh. (Hym., Braconidae), a larval parasite of Phthorimaea operculella Zell. (Lep., Gelechiidae) in Egypt. Zeitschrift für Angewandte Entomologie, 96: 3236.Google Scholar
Abdel-Gawaad, A.A.-W., and El-Shazli, A.Y. 1971. Studies on Thrips tabaci Lindman. VII. Effect of food on the life cycle. Zeitschrift für Angewandte Entomologie, 67: 2730.Google Scholar
Abdel-Malek, A., Dimetry, N.Z., El-Ziady, S., and El-Hawwary, F.M. 1982. Ecological studies on Aphis craccivora Koch. III. The role of day length as an environmental factor regulating development and form produced. Zeitschrift für Angewandte Entomologie, 93: 238243.Google Scholar
Ables, J.R., Shepard, M., and Holman, J.R. 1976. Development of the parasitoids Spalangia endius and Muscidifurax raptor in relation to constant and variable temperature: simulation and validation. Environmental Entomology, 5: 329332.CrossRefGoogle Scholar
Abou-Awad, B.A. 1980. The biology and morphology of Eriophyes datura Soliman and Abou-Awad (Acari: Eriophyoidea: Eriophyidae). Acarologia, 21: 392395.Google Scholar
Abou-Awad, B.A. 1981. Bionomics of the mango rust mite Metaculus mangiferae (Attiah) with description of immature stages (Eriophyoidea: Eriophyidae). Acarologia, 22: 151155.Google Scholar
Abou-Awad, B.A., El-Sherif, A.A., Hassan, M.F., and Abou-Elela, M.M. 1998. Lebensgeschichte und Lebenstafel von Amblyseius badryi, einem spezifischen Predator der eriophyiden Grasmilben (Acari: Phytoseiidae: Eriophyidae). Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 105: 422428.Google Scholar
Abou-Awad, B.A., El-Sawaf, B.M., and Abdel-Khalek, A.A. 1999 a. Impact of two eriophyoid fig mites, Aceria ficus and Rhyncaphytoptus ficifoliae, as prey on postembryonic development and oviposition rate of the predacious mite Amblyseius swirskii. Acarologia, 40: 367371.Google Scholar
Abou-Awad, B.A., El-Sawaf, B.M., Reda, A.S., and Abdel-Khalek, A.A. 1999 b. Environmental management and biological aspects of two eriophyoid fig mites in Egypt: Aceria ficus and Rhyncaphytoptus ficifoliae. Acarologia, 40: 419429.Google Scholar
Abou-Awad, B.A., Korayem, A.M., Hassan, M.F., and Abou-Elela, M.A. 2001. Life history of the predatory mite Lasioseius athiasae (Acari, Ascidae) on various kinds of food substances: a polypeptide analysis of prey consideration. Journal of Applied Entomology, 125: 125130.CrossRefGoogle Scholar
Abou-Setta, M.M., and Childers, C.C. 1989. Biology of Euseius mesembrinus (Acari: Phytoseiidae): life tables and feeding behavior on tetranychid mites on citrus. Evironmental Entomology, 18: 665669.Google Scholar
Abou-Setta, M.M., and Childers, C.C. 1991. Intrinsic rate of increase over different generation time intervals of insect and mite species with overlapping generations. Annals of the Entomological Society of America, 84: 517521.Google Scholar
Aitchison, C.W. 1983. Low temperature and preferred feeding by winter-active Collembola (Insecta, Apterygota). Pedobiologia, 25: 2736.CrossRefGoogle Scholar
Aitchison, C.W. 1984. Low temperature feeding by winter-active spiders. Journal of Arachnology, 12: 297305.Google Scholar
Aldyhim, Y.N., and Khalil, A.F. 1993. Influence of temperature and daylength on population development of Aphis gossypii on Cucurbita pepo. Entomologia Experimentalis et Applicata, 67: 167172.Google Scholar
Ali, F.S. 1998. Life tables of Phytoseiulus macropilis (Banks) (Gamasida: Phytoseiidae) at different temperatures. Experimental and Applied Acarology, 22: 335342.Google Scholar
Allen, J.C., Yang, Y., and Knapp, J.L. 1995. Temperature effects on development and fecundity of the citrus rust mite (Acari: Eriophyidae). Environmental Entomology, 24: 9961004.CrossRefGoogle Scholar
Allingham, P.G. 1991. Effect of temperature on late immature stages of Culicoides brevitarsis (Diptera: Ceratopogonidae). Journal of Medical Entomology, 28: 878881.CrossRefGoogle ScholarPubMed
Altahtawy, M.M., Hammad, S.M., and Hegazi, E.M. 1976. Studies on the dependence of Microplitis rufiventris Kok. (Hym., Braconidae) parasitizing Spodoptera littoralis (Boisd.) on own food as well as on food of its host. Zeitschrift für Angewandte Entomologie, 81: 313.CrossRefGoogle Scholar
Amano, H., and Chant, D.A. 1977. Life history and reproduction of two species of predacious mites, Phytoseiulus persimilis Athias-Henriot and Amblyseius andersoni (Chant) (Acarina: Phytoseiidae). Canadian Journal of Zoology, 55: 19781983.Google Scholar
Anderson, R.C., and Paschke, J.D. 1968. The biology and ecology of Anaphes flavipes (Hymenoptera: Mymaridae), an exotic egg parasite of the cereal leaf beetle. Annals of the Entomological Society of America, 61: 15.CrossRefGoogle Scholar
Anderson, R.C., and Paschke, J.D. 1969. Additional observations on the biology of Anaphes flavipes (Hymenoptera: Mymaridae), with special reference to the effects of temperature and superparasitism on development. Annals of the Entomological Society of America, 62: 13161321.CrossRefGoogle Scholar
Antony, B., Palaniswami, M.S., and Henneberry, T.J. 2003. Encarsia transvena (Hymenoptera: Aphelinidae) development on different Bemisia tabaci Gennadius (Homoptera: Aleyrodidae) instars. Environmental Entomology, 32: 584591.Google Scholar
Arbabi, M., and Baradaran, P. 2001. Study on population fluctuation of Amblydromella kettanehi Denmark and Daaeshvar on Pinus eldarica Medw. in Tehran and its biology on Tetranychus urticae Koch under laboratory condition. Journal of Entomological Society of Iran, 20: 121. [In Farsi.]Google Scholar
Asante, S.K., and Danthanarayana, W. 1992. Development of Aphelinus mali an endoparasitoid of woolly apple aphid, Eriosoma lanigerum at different temperatures. Entomologia Experimentalis et Applicata, 65: 3137.Google Scholar
Ash, N., and Greenberg, B. 1975. Developmental temperature responses of the sibling species Phaenicia sericata and Phaenicia pallescens. Annals of the Entomological Society of America, 68: 197200.CrossRefGoogle Scholar
Ashihara, W. 1987. Infestation and reproduction of the citrus red mite, Panonychus citri (McGregor) (Acarina: Tetranychidae) on leguminous plants. Applied Entomology and Zoology, 22: 512518.Google Scholar
Asin, L., and Pons, X. 2001. Effect of high temperature on the growth and reproduction of corn aphids (Homoptera: Aphididae) and implications for their population dynamics on the northeastern Iberian peninsula. Environmental Entomology, 30: 11271134.CrossRefGoogle Scholar
Askari, A., and Stern, V.M. 1972. Biology and feeding habits of Orius tristicolor (Hemiptera: Anthocoridae). Annals of the Entomological Society of America, 65: 96100.Google Scholar
Attiah, H.H., Hanna, M.A., Rizk, R.A., and El-Saadany, G. 1978. Species differences between Tetranychus cucurbitacearum (Say.) and T. arabicus At. in response to rearing humidity. Zeitschrift für Angewandte Entomologie, 85: 3742.Google Scholar
Awan, M.S., Wilson, L.T., and Hoffmann, M.P. 1990. Comparative biology of three geographic populations of Trissolcus basalis (Hymenoptera: Scelionidae). Environmental Entomology, 19: 387392.CrossRefGoogle Scholar
Ayres, M.P., and MacLean, S.F. Jr., 1987. Molt as a component of insect development: Galerucella sagittariae (Chrysomelidae) and Epirrita autumnata (Geometridae). Oikos, 48: 273279.Google Scholar
Ayres, M.P., and Scriber, J.M. 1994. Local adaptation to regional climates in Papilio canadensis (Lepidoptera: Papilionidae). Ecological Monographs, 64: 465482.Google Scholar
Badii, M.H., and McMurtry, J.A. 1984. Life history of and life table parameters for Phytoseiulus longipes with comparative studies on P. persimilis and Typhlodromus occidentalis (Acari: Phytoseiidae). Acarologia, 25: 111123.Google Scholar
Bakker, K., and Nelissen, F.X. 1963. On the relations between the duration of the larval and pupal period, weight and diurnal rhythm in emergence in Drosophila melanogaster. Entomologia Experimentalis et Applicata, 6: 3752.Google Scholar
Ball, J.C. 1980. Development, fecundity, and prey consumption of four species of predacious mites (Phytoseiidae) at two constant temperatures. Environmental Entomology, 9: 298303.CrossRefGoogle Scholar
Ballou, J.K., Tsai, J.H., and Center, T.D. 1986. Effects of temperature on the development, natality, and longevity of Rhopalosiphum nymphaeae (L.) (Homoptera: Aphididae). Environmental Entomology, 15: 10961099.Google Scholar
Barker, P.S. 1967. The effects of high humidity and different temperatures on the biology of Tyrophagus putrescentiae (Schrank) (Acarina: Tyrogliphidae). Canadian Journal of Zoology, 45: 9196.Google Scholar
Barker, P.S. 1974. Bionomics of Caloglyphus anomalus Nesbitt (Acarina: Acaridae). The Manitoba Entomologist, 8: 4147.Google Scholar
Barnard, D.R., and Jones, R.H. 1980. Culicoides variipennis: seasonal abundance, overwintering, and voltinism in northeastern Colorado. Environmental Entomology, 9: 709712.Google Scholar
Basha, A.E., Yousef, A.A., and Mostafa, E.M. 2002. Morphology and biology of Euseius metwallyi n. sp. (Acari: Gamasida: Phytoseiidae). Acarologia, 42: 2937.Google Scholar
Baumann, R.W. 1987. Order Plecoptera. In Immature insects. Edited by Stehr, F.W.. Kendall/Hunt, Dubuque, Iowa. pp. 186195.Google Scholar
Baumgartner, D.L. 1993. Review of Chrysomya rufifacies (Diptera: Calliphoridae). Journal of Medical Entomology, 30: 338352.Google Scholar
Baxendale, F.P., Teetes, G.L., Sharpe, P.J.H., and Wu, H. 1984. Temperature-dependent model for development of nondiapausing sorghum midges (Diptera: Cecidomyiidae). Environmental Entomology, 13: 15721576.Google Scholar
Beavers, J.B., and Hampton, R.B. 1971. Growth, development, and mating behavior of the citrus red mite (Acarina: Tetranychidae). Annals of the Entomological Society of America, 64: 804806.Google Scholar
Begum, S. 1999. Biology of the parasitoid, Anisopteromalus calandrae How. (Hymenoptera: Pteromalidae). Bangladesh Journal of Zoology, 27: 125129.Google Scholar
Behura, B.K. 1957. The life-history of Histiostoma polypori (Oud.) (Acari: Tyroglyphoidea). Journal of the New York Entomological Society, 65: 5178.Google Scholar
Bergh, J.C. 1994. Pear rust mite (Acari: Eriophyidae) fecundity and development at constant temperatures. Environmental Entomology, 23: 420424.Google Scholar
Bernal, J.S., Waggoner, M., and González, D. 1997. Reproduction of Aphelinus albipodus (Hymenoptera: Aphelinidae) on Russian wheat aphid (Hemiptera: Aphididae) hosts. European Journal of Entomology, 94: 8396.Google Scholar
Biever, K.D. 1965. A rearing technique for the colonization of chironomid midges. Annals of the Entomological Society of America, 58: 135136.CrossRefGoogle Scholar
Birch, L.C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology, 17: 1526.Google Scholar
Bishop, J.A., and Armbruster, W.S. 1992. The relationship between size and thermoregulatory capability in social and solitary bees of interior Alaska. Bulletin of the Ecological Society of America, 73: 112.Google Scholar
Bishop, A.L., McKenzie, H.J., Barchia, I.M., and Harris, A.M. 1996. Effect of temperature regimes on the development, survival and emergence of Culicoides brevitarsis Kieffer (Diptera: Ceratopogonidae) in bovine dung. Australian Journal of Entomology, 35: 361368.Google Scholar
Bledsoe, L.W., Flanders, R.V., and Edwards, C.R. 1983. Morphology and development of the immature stages of Pediobius foveolatus (Hymenoptera: Eulophidae). Annals of the Entomological Society of America, 76: 953957.Google Scholar
Bliss, M. Jr., and Kearby, W.H. 1971. Observations on the oviposition sites and laboratory development of the fundatrix and virginopara of the aphid Eulachnus agilis. Annals of the Entomological Society of America, 64: 14071410.CrossRefGoogle Scholar
Block, W., Webb, N.R., Coulson, S., Hodkinson, I.D., and Worland, M.R. 1994. Thermal adaptation in the Arctic collembolan Onychiurus arcticus (Tullberg). Journal of Insect Physiology, 40: 715722.CrossRefGoogle Scholar
Bloem, K.A., and Duffey, S.S. 1990. Effect of protein type and quantity on growth and development of larval Heliothis zea and Spodoptera exigua and the endoparasitoid Hyposoter exiguae. Entomologia Experimentalis et Applicata, 54: 141148.Google Scholar
Blommers, L. 1974. Preliminary studies on two predators (Acarina: Phytoseiidae) of the spider mite Tetranychus neocaledonicus André (Acarina: Tetranychidae). Zeitschrift für Angewandte Entomologie, 75: 315321.Google Scholar
Blommers, L. 1976. Capacities for increase and predation in Amblyseius bibens (Acarina: Phytoseiidae). Zeitschrift für Angewandte Entomologie, 81: 225244.Google Scholar
Boling, J.C., and Pitre, H.N. 1970. Life history of Apanteles marginiventris with descriptions of immature stages. Journal of the Kansas Entomological Society, 43: 465470.Google Scholar
Bonato, O., Mapangou-Divassa, S., and Gutierrez, J. 1995. Influence of relative humidity on life-history parameters of Mononychellus progresivus and Oligonychus gossypii (Acari: Tetranychidae). Environmental Entomology, 24: 841845.Google Scholar
Bonner, J.T., and Horn, H.S. 1982. Selection for size, shape, and development timing. In Evolution and development: Report of the Dahlem workshop on evolution and development, Berlin, 10–15 May 1981. Edited by Bonner, J.T.. Springer-Verlag, Berlin. pp. 259276.Google Scholar
Boorman, J. 1974. The maintenance of laboratory colonies of Culicoides variipennis (Coq.), C. nubeculosus (Mg.) and C. riethi Kieff. (Diptera, Ceratopogonidae). Bulletin of Entomological Research, 64: 371377.Google Scholar
Bounfour, M., and Tanigoshi, L.K. 2001. Effect of temperature on development and demographic parameters of Tetranychus urticae and Eotetranychus carpini borealis (Acari: Tetranychidae). Annals of the Entomological Society of America, 94: 400404.Google Scholar
Boyne, J.V., and Hain, F.P. 1983 a. Effects of constant temperature, relative humidity, and simulated rainfall on development and survival of the spruce spider mite (Oligonychus ununguis). The Canadian Entomologist, 115: 93105.Google Scholar
Boyne, J.V., and Hain, F.P. 1983 b. Responses of Neoseiulus fallacis (Acarina: Phytoseiidae) to different prey densities of Oligonychus ununguis (Acarina: Tetranychidae) and to different relative humidity regimes. The Canadian Entomologist, 115: 16071614.Google Scholar
Branson, T.F., and Ortman, E.E. 1967. Biology of laboratory-reared corn leaf aphids, Rhopalosiphum maidis (Homoptera: Aphididae). Annals of the Entomological Society of America, 60: 11181119.CrossRefGoogle Scholar
Brittain, J.E. 1982. Biology of mayflies. Annual Review of Entomology, 27: 119147.CrossRefGoogle Scholar
Brooks, H.L., and Warren, L.O. 1964. Biology of a pine bark aphid, Cinara watsoni, and its response to temperature. Journal of the Kansas Entomological Society, 37: 310316.Google Scholar
Broufas, G.D., and Koveos, D.S. 2000. Effect of different pollens on development, survivorship and reproduction of Euseius finlandicus (Acari: Phytoseiidae). Environmental Entomology, 29: 743749.CrossRefGoogle Scholar
Broufas, G.D., and Koveos, D.S. 2001. Development, survival and reproduction of Euseius finlandicus (Acari: Phytoseiidae) at different constant temperatures. Experimental and Applied Acarology, 25: 441460.Google Scholar
Brown, H.D. 1972. On the biology of Lioadalia flavomaculata (Deg.) (Col., Coccinellidae), a predator of the wheat aphid (Schizaphis graminum (Rond.)) in South Africa. Bulletin of Entomological Research, 61: 673679.Google Scholar
Browning, H.W., and Oatman, E.R. 1981. Effects of different constant temperatures on adult longevity, development time, and progeny production of Hyposoter exiguae (Hymenoptera: Ichneumonidae). Annals of the Entomological Society of America, 74: 7982.Google Scholar
Browning, H.W., and Oatman, E.R. 1985. Reproductive biology of Microplitis brassicae (Hymenoptera: Braconidae), parasite of the cabbage looper, Trichoplusia ni (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 78: 369372.Google Scholar
Bruce, W.A. 1984. Temperature and humidity: effects on survival and fecundity of Pyemotes tritici (Acari: Pyemotidae). International Journal of Acarology, 10: 135138.Google Scholar
Buckingham, G.R., and Bennett, C.A. 1981. Laboratory biology and behavior of Litodactylus leucogaster, a ceutorhynchine weevil that feeds on watermilfoils. Annals of the Entomological Society of America, 74: 451458.CrossRefGoogle Scholar
Butler, G.D. Jr., and Lopez, J.D. 1980. Trichogramma pretiosum: development in two hosts in relation to constant and fluctuating temperatures. Annals of the Entomological Society of America, 73: 671673.Google Scholar
Butler, G.D. Jr., and Schmidt, K.M. 1985. Goniozus legneri (Hymenoptera: Bethylidae): development, oviposition, and longevity in relation to temperature. Annals of the Entomological Society of America, 78: 373375.Google Scholar
Byrd, J.H., and Allen, J.C. 2001. The development of the black blow fly, Phormia regina (Meigen). Forensic Science International, 120: 7988.Google Scholar
Byrd, J.H., and Butler, J.F. 1997. Effects of temperature on Chrysomya rufifacies (Diptera: Calliphoridae) development. Journal of Medical Entomology, 34: 353358.CrossRefGoogle ScholarPubMed
Caceres, S., and Childers, C.C. 1991. Biology and life tables of Galendromus helveolus (Acari: Phytoseiidae) on Florida citrus. Environmental Entomology, 20: 224229.Google Scholar
Campbell, A., and Mackauer, M. 1975 a. Thermal constants for development of the pea aphid (Homoptera: Aphididae) and some of its parasites. The Canadian Entomologist, 107: 419423.Google Scholar
Campbell, A., and Mackauer, M. 1975 b. The effect of parasitism by Aphidius smithi (Hymenoptera: Aphidiidae) on reproduction and population growth of the pea aphid (Homoptera: Aphididae). The Canadian Entomologist, 107: 919926.Google Scholar
Campbell, A., and Mackauer, M. 1977. Reproduction and population growth of the pea aphid (Homoptera: Aphididae) under laboratory and field conditions. The Canadian Entomologist, 109: 277284.Google Scholar
Campbell, C.D., and Hutchison, W.D. 1995. Rearing methods and demographic statistics for a subterranean morph of the sugarbeet root aphid (Homoptera: Aphididae). The Canadian Entomologist, 127: 6577.Google Scholar
Camporese, P., and Duso, C. 1995. Life history and life table parameters of the predatory mite Typhlodromus talbii. Entomologia Experimentalis et Applicata, 77: 149157.Google Scholar
Cannon, R.J.C. 1984. The development rate of Metopolophium dirhodum (Walker) (Hemiptera: Aphidide) on winter wheat. Bulletin of Entomological Research, 74: 3346.Google Scholar
Capinera, J.L., Narango, S.E., and Renaud, A.R. 1981. Alfalfa webworm: larval development in response to diet and temperature. Southwest Entomologist, 6: 1017.Google Scholar
Caresche, L.A., and Wapshere, A.J. 1975. The Chondrilla gall midge, Cystiphora schmidti (Rübsaamen) (Diptera, Cecidomyiidae). II. Biology and host specificity. Bulletin of Entomological Research, 65: 5564.Google Scholar
Carey, J.R. 1993. Applied demography for biologists with special emphasis on insects. Oxford University Press, New York.Google Scholar
Carey, J.R., and Bradley, J.W. 1982. Developmental rates, vital schedules, sex ratios, and life tables for Tetranychus urticae T. turkestani and T. pacificus (Acarina: Tetranychidae) on cotton. Acarologia, 23: 333345.Google Scholar
Carroll, D.P., and Hoyt, S.C. 1986 a. Developmental rate, weight, and ovarian parameters of apple aphids, Aphis pomi (Homoptera: Aphididae), reared at one or two constant temperatures, with evidence of residual effects. Environmental Entomology, 15: 607613.Google Scholar
Carroll, D.P., and Hoyt, S.C. 1986 b. Some effects of parental rearing conditions and age on progeny birth weight, growth, development, and reproduction in the apple aphid, Aphis pomi (Homoptera: Aphididae). Environmental Entomology, 15: 614619.Google Scholar
Cartier, J.J. 1960. Growth, reproduction and longevity in one biotype of the pea aphid, Acyrthosiphon pisum (Harr.) (Homoptera: Aphididae). The Canadian Entomologist, 92: 762764.Google Scholar
Castagnoli, M., and Liguori, M. 1986. Tempi di sviluppo e ovideposizione di Typhlodromus exhilaratus Ragusa (Acarina: Phytoseiidae) allevato con vari tipi di cibo. Redia, 69: 361368.Google Scholar
Castagnoli, M., Amato, F., and Monagheddu, M. 1989. Osservazioni biologiche e parametri demografici di Eotetranychus carpini (Oud.) (Acarina: Tetranychidae) e del suo predatore Typhlodromus exhilaratus Ragusa (Acarina: Phytoseiidae) in condizioni di laboratorio. Redia, 72: 545557.Google Scholar
Catley, K.M. 1992. Supercooling and its ecological implications in Coelotes atropos (Araneae, Agelenidae). Journal of Arachnology, 20: 5863.Google Scholar
Cave, R.D., and Gaylor, M.J. 1988. Influence of temperature and humidity on development and survival of Telenomus reynoldsi (Hymenoptera: Scelionidae) parasitizing Geocoris punctipes (Heteroptera: Lygaeidae) eggs. Annals of the Entomological Society of America, 81: 278285.Google Scholar
Childs, G.H., Ashley, T.R., Habeck, D.H., and Poe, S.L. 1984. Temperature effects on development and reproduction of the southern red mite, Oligonychus ilicis, reared on Ilex crenata. Acarologia, 25: 341345.Google Scholar
Chippindale, A.K., Alipaz, J.A., Chen, H.-W., and Rose, M.R. 1997. Experimental evolution of accelerated development in Drosophila. I. Developmental speed and larval survival. Evolution, 51: 15361551.Google Scholar
Cicolani, B. 1978. The influence of temperature on the speed of development, from egg to adult, of Macrocheles matrius (Acarina: Mesostigmata). Acarologia, 19: 384394.Google Scholar
Cicolani, B. 1979. The intrinsic rate of natural increase in dung macrochelid mites, predators of Musca domestica eggs. Bolletino di Zoologia, 46: 171178.Google Scholar
Cicolani, B. 1983. Action de différentes températures constantes sur la durée de développement, de l'œuf à l'adulte, des macrochélides fimicoles Macrocheles subbadius et Macrocheles vernalis (Acarina: Mesostigmata). Acarologia, 24: 145158.Google Scholar
Cicolani, B., Passariello, S., and Petrelli, G. 1977. Influenza della temperatura su l'incremento di populazione in Macrocheles subbadius (Acarina: Mesostigmata). Acarologia, 19: 563578.Google Scholar
Coats, S.A. 1976. Life cycle and behaviour of Muscidifurax zaraptor (Hymenoptera: Pteromalidae). Annals of the Entomological Society of America, 69: 772780.Google Scholar
Cocuzza, G.E., De Clercq, P., Lizzio, S., Van de Veire, M., Tirry, L., Degheele, D., and Vacante, V. 1997. Life tables and predation activity of Orius laevigatus and O. albidipennis at three constant temperatures. Entomologia Experimentalis et Applicata, 85: 189198.Google Scholar
Cohen, M.B., and Mackauer, M. 1987. Intrinsic rate of increase and temperature coefficients of the aphid parasite Ephedrus californicus Baker (Hymenoptera: Aphidiidae). The Canadian Entomologist, 119: 231237.Google Scholar
Collins, R.D., and Grafius, E. 1986. Biology and life cycle of Anaphes sordidatus (Hymenoptera: Mymaridae), an egg parasitoid of the carrot weevil (Coleoptera: Curculionidae). Environmental Entomology, 15: 100105.Google Scholar
Colwell, R.K. 1973. Competition and coexistence in a simple tropical community. American Naturalist, 107: 737760.Google Scholar
Congdon, B.D., and Logan, J.A. 1983. Temperature effects on development and fecundity of Oligonychus pratensis (Acari: Tetranychidae). Environmental Entomology, 12: 359362.Google Scholar
Connell, T.D., and Scheiring, J.F. 1982. Demography of the shore fly, Scatella picea (Walker) (Diptera: Ephydridae). Environmental Entomology, 11: 611617.Google Scholar
Consoli, F.L., and Parra, J.R.P. 1996. Biology of Trichogramma galloi and T. pretiosum (Hymenoptera: Trichogrammatidae) reared in vitro and in vivo. Annals of the Entomological Society of America, 89: 828834.Google Scholar
Cônsoli, F.L., Rossi, M.M., and Parra, J.R.P. 1999. Developmental time and characteristics of the immature stages of Trichogramma galloi and T. pretiosum (Hymenoptera, Trichogrammatidae). Revista Brasileira de Entomologia, 43: 271275.Google Scholar
Cônsoli, R.A.G.B., and Williams, P. 1978. Laboratory observations on the bionomics of Aedes fluviatilis (Lutz) (Diptera: Culicidae). Bulletin of Entomological Research, 68: 123136.Google Scholar
Corbet, P.S. 1972. The microclimate of arctic plants and animals, on land and in fresh water. Acta Arctica, 18: 143.Google Scholar
Corbet, P.S., and Danks, H.V. 1975. Egglaying habits of mosquitoes in the high arctic. Mosquito News, 35: 814.Google Scholar
Cornell, H.V. 1990. Survivorship, life history and concealment: a comparison of leaf miners and gall formers. American Naturalist, 136: 581597.CrossRefGoogle Scholar
Cornell, H.V. 1991. Survivorship, life history, and concealment: a comparison of leaf miners and gall formers. Bulletin of the Ecological Society of America, 72: 92.Google Scholar
Coville, P.L., and Allen, W.W. 1977. Life table and feeding habits of Scolothrips sexmaculatus (Thysanoptera: Thripidae). Annals of the Entomological Society of America, 70: 1116.Google Scholar
Cross, E.A., and Bohart, G.E. 1990. Notes on the life history of Sancassania boharti (Acari: Acaridae) and its relationship to the alkali bee, Nomia melanderi (Hymenoptera: Halictidae). Journal of the Kansas Entomological Society, 63: 603610.Google Scholar
Cross, E.A., and Kaliszewski, M.J. 1988. The life history of a mushroom pest mite, Pediculaster flechtmanni (Wicht) (Acari: Pygmephoroidea), with studies of alternate morph formation. Environmental Entomology, 17: 309315.CrossRefGoogle Scholar
Dahlan, A.N., and Gordh, G. 1996. Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) on Helicoverpa armigera (Hübner) eggs (Lepidoptera: Noctuidae). Australian Journal of Entomology, 35: 337344.Google Scholar
Dahlan, A.N., and Gordh, G. 1998. Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) in eggs of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) and in artificial diet. Australian Journal of Entomology, 37: 254264.Google Scholar
Danks, H.V. 1978. Some effects of photoperiod, temperature and food on emergence in three species of Chironomidae (Diptera). The Canadian Entomologist, 110: 289300.Google Scholar
Danks, H.V. 1981. The composition, distribution and ecology of arctic insects, with some speculations on the evolution of arctic communities. In Evolution today. Proceedings of the 2nd International Congress of Systematic and Evolutionary Biology, Vancouver, British Columbia, 17-24 July 1980. Edited by Scudder, G.G.E. and Reveal, J.L.. Hunt Institute of Botanical Documentation, Pittsburgh, Pennsylvania. pp. 2123.Google Scholar
Danks, H.V. 1983. Extreme individuals in natural populations. Bulletin of the Entomological Society of America, 29: 4146.Google Scholar
Danks, H.V. 1987. Insect dormancy: an ecological perspective. Biological Survey of Canada (Terrestrial Arthropods), Ottawa, Ontario.Google Scholar
Danks, H.V. 1992. Long life cycles in insects. The Canadian Entomologist, 124: 167187.Google Scholar
Danks, H.V. 1994. Diversity and integration of life-cycle controls in insects. In Insect life-cycle polymorphism: theory, evolution and ecological consequences for seasonality and diapause control. Edited by Danks, H.V.. Kluwer Academic Publishers, Dordrecht. pp. 540.Google Scholar
Danks, H.V. 2000. Measuring and reporting life-cycle duration in insects and arachnids. European Journal of Entomology, 97: 285303.CrossRefGoogle Scholar
Danks, H.V. 2001. The nature of dormancy responses in insects. Acta Societatis Zoologicae Bohemicae, 65: 169179.Google Scholar
Danks, H.V. 2002 a. The range of insect dormancy responses. European Journal of Entomology, 99: 127142.CrossRefGoogle Scholar
Danks, H.V. 2002 b. Modification of adverse conditions by insects. Oikos, 99: 1024.Google Scholar
Danks, H.V. 2004. Seasonal adaptations in arctic insects. Integrative and Comparative Biology, 44: 8594.Google Scholar
Danks, H.V., and Foottit, R.G. 1989. Insects of the boreal zone of Canada. The Canadian Entomologist, 121: 626677.Google Scholar
Darst, P.H., and King, E.W. 1969. Biology of Melichares tarsalis in association with Plodia interpunctella. Annals of the Entomological Society of America, 62: 747749.Google Scholar
Das, G.M., and Das, S.C. 1966. Effect of temperature and humidity on the development of tea red spider mite, Oligonychus coffeae (Nietner). Bulletin of Entomological Research, 57: 433436.Google Scholar
Davis, R., and Hunter, P.E. 1963. Biological studies of a Histiogaster mite (Acarina: Acaridae) associated with pine reproduction weevils. Annals of the Entomological Society of America, 56: 682687.Google Scholar
de Moraes, G.J., and Lima, H.C. 1983. Biology of Euseius concordis (Chant) (Acarina: Phytoseiidae) a predator of the tomato russet mite. Acarologia, 24: 251255.Google Scholar
de Moraes, G.J., and McMurtry, J.A. 1981. Biology of Amblyseius citrifolius (Denmark and Muma) (Acarina: Phytoseiidae). Hilgardia, 49: 129.Google Scholar
de Moraes, G.J., McMurtry, J.A., and Denmark, H.A. 1986. A catalog of the mite family Phytoseiidae: references to taxonomy, synonymy, distribution and habitat. Embrapa-DDT, Brasilia.Google Scholar
Dean, G.J. 1974. Effect of temperature on the cereal aphids Metopolophium dirhodum (Wlk.), Rhopalosiphum padi (L.) and Macrosiphum avenae (F.) (Hem., Aphididae). Bulletin of Entomological Research, 63: 401409.Google Scholar
Debolt, J.W. 1981. Laboratory biology and rearing of Leiophron uniformis (Gahan) (Hymenoptera: Braconidae), a parasite of Lygus spp. (Hemiptera: Miridae). Annals of the Entomological Society of America, 74: 334337.Google Scholar
Dejoux, C. 1971. Recherches sur le cycle de développement de Chironomus pulcher (Diptera: Chironomidae). The Canadian Entomologist, 103: 465470.Google Scholar
Depner, K.R. 1961. The effect of temperature on development and diapause of the horn fly, Siphona irritans (L.) (Diptera: Muscidae). The Canadian Entomologist, 93: 855859.Google Scholar
Dinh, N.V., Janssen, A., and Sabelis, M.W. 1988. Reproductive success of Amblyseius idaeus and A. anonymus on a diet of two-spotted spider mites. Experimental and Applied Acarology, 4: 4151.Google Scholar
Eggers-Schumacher, H.A. 1983. A comparison of the reproductive performance of insecticide-resistant and susceptible clones of Myzus persicae. Entomologia Experimentalis et Applicata, 34: 301307.Google Scholar
Egwuatu, R.I., and Taylor, T.A. 1977. Bionomics of Gyron gnidus Nixon (Hymenoptera: Scelionidae), an egg parasite of Acanthomia tomentosicollis Stål (Hemiptera: Coreidae) in Nigeria. Applied Entomology and Zoology, 12: 7678.Google Scholar
El-Banhawy, E.M., Amer, S.A.A, and Saber, S.A. 2000. Development and reproduction of the predacious mite, Amblyseius cydnodactylon on different prey species; effect of plant leaf texture on the behaviour and reproduction of the predator. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz, 107: 218224.Google Scholar
El Din, N.S. 1976. Effects of temperature on the aphid, Myzus persicae (Sulz.), with special reference to critically low and high temperature. Zeitschrift für Angewandte Entomologie, 80: 714.Google Scholar
El-Laithy, A.Y.M., and Fouly, A.H. 1992. Life table parameters of the two phytoseiid predators Amblyseius scutalis (Athias-Henriot) and A. swirskii A.-H. (Acari, Phytoseiidae) in Egypt. Journal of Applied Entomology, 113: 812.Google Scholar
Elbadry, E.A., and Tawfik, M.S.F. 1966. Life cycle of the mite Adactylidium sp. (Acarina: Pyemotidae), a predator of thrips eggs in the United Arab Republic. Annals of the Entomological Society of America, 59: 458461.Google Scholar
Elliott, N.C., and Kieckhefer, R.W. 1989. Effects of constant and fluctuating temperatures on immature development and age-specific life tables of Rhopalosiphum padi (L.) (Homoptera: Aphididae). The Canadian Entomologist, 121: 131140.Google Scholar
Engroff, B.W., and Watson, T.F. 1975. Influence of temperature on adult biology and population growth of Bracon kirkpatricki. Annals of the Entomological Society of America, 68: 11211125.Google Scholar
Farghaly, H.T. 1975. Some bionomic dates on the parasite Trichogramma evanescens Westwood in the eggs of Anagasta kuehniella Zeller. Zeitschrift für Angewandte Entomologie, 79: 332335.Google Scholar
Fay, H.A.C. 1985. Temperature-regulated development rates of the immature stages of the African buffalo fly, Haematobia thirouxi potans (Bezzi) (Diptera: Muscidae). Environmental Entomology, 14: 3841.Google Scholar
Feldmann, A.M. 1981. Life table and male mating competitiveness of wild type and of a chromosome mutation strain of Tetranychus urticae in relation to genetic pest control. Entomologia Experimentalis et Applicata, 29: 125137.CrossRefGoogle Scholar
Fereres, A., Lister, R.M., Araya, J.E., and Foster, J.E. 1989. Development and reproduction of the English grain aphid (Homoptera: Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environmental Entomology, 18: 388393.Google Scholar
Fernandez-Quintanilla, C., Fereres, A., Godfrey, L., and Norris, R.F. 2002. Development and reproduction of Myzus persicae and Aphis fabae (Hom., Aphididae) on selected weed species surrounding sugar beet fields. Journal of Applied Entomology, 126: 198202.Google Scholar
Ferragut, F., Garci-Marí, F., Costa-Comelles, J., and Laborda, R. 1987. Influence of food and temperature on development and oviposition of Euseius stipulatus and Typhlodromus phialatus (Acari: Phytoseiidae). Experimental and Applied Acarology, 3: 317329.Google Scholar
Fields, P.G., and McNeil, J.N. 1988. The importance of seasonal variation in hair coloration for thermoregulation of Ctenucha virginica larvae (Lepidoptera: Arctiidae). Physiological Entomology, 13: 165175.Google Scholar
Filipponi, A., and Cicolani, B. 1974. Influenza della temperatura sulla fecondità, longevità e capacità moltiplicativa nell'intervallo ottimale di Macrocheles matrius (Acarina: Mesostigmata). Rivista di Parassitologia, 35: 291306.Google Scholar
Filipponi, A., and Mosna, B. 1968. Influenza di fattori ecologici e genetici sulla natalità e mortalità di Macrocheles robustulus (Berlese, 1904). Annali dell Istituto Superiore di Sanita, 4: 551571.Google Scholar
Filipponi, A., and Passariello, S. 1969. Influenza della temperatura sulla fecondità, longevità e capacità moltiplicativa di Macrocheles peniculatus Berlese (Acarina, Mesostigmata). Rivista di Parassitologia, 30: 259310.Google Scholar
Filipponi, A., and Petrelli, G. 1969. Sulla capacità moltiplicativa di Macrocheles perglaber (Acarina, Mesostigmata) in condizioni di laboratorio. Parassitologia, 11: 14.Google Scholar
Filipponi, A., Mosma, B., and Petrelli, G. 1971 a. L'ottimo di temperatura di M. muscaedomesticae (Scopoli) (Acarina: Mesostigmata). Rivista di Parassitologia, 28: 129156.Google Scholar
Filipponi, A., Petrelli, G., and Passariello, S. 1971 b. Contributi sperimentali di laboratoria sulla autoecologia e demoecologia di Macrocheles penicilliger (Ber.) (Acari: Mesostigmata). Bolletino di Zoologia, 38: 133.Google Scholar
Fink, T.J. 1980. A comparison of mayfly (Ephemeroptera) instar determination methods. In Proceedings of the 3rd International Conference on Ephemeroptera: Advances in Ephemeroptera Biology, Winnipeg, Manitoba, 4–10 July 1979. Edited by Flannagan, J.F. and Marshall, K.E.. Plenum Press, New York. pp. 367380.Google Scholar
Fitzgerald, T.D. 1993. Sociality in caterpillars. In Caterpillars: ecological and evolutionary constraints on foraging. Edited by Stamp, N.E. and Casey, T.M.. Chapman and Hall, London. pp. 372404.Google Scholar
Force, D.C., and Messenger, P.S. 1964. Duration of development, generation time, and longevity of three hymenopterous parasites of Therioaphis maculata reared at various constant temperatures. Annals of the Entomological Society of America, 57: 405413.Google Scholar
Fouly, A.H., Abou-Setta, M.M., and Childers, C.C. 1995. Effects of diet on the biology and life tables of Typhlodromalus peregrinus (Acari: Phytoseiidae). Environmental Entomology, 24: 870874.Google Scholar
Fox, P.M., Pass, B.C., and Thurston, R. 1967. Laboratory studies on the rearing of Aphidius smithi (Hymenoptera: Braconidae) and its parasitism of Acyrthosiphon pisum (Homoptera: Aphididae). Annals of the Entomological Society of America, 60: 10831087.Google Scholar
Francis, F., Haubruge, E., Hastir, P., and Gaspar, C. 2001. Effect of aphid host plant on development and reproduction of the third trophic level, the predator Adalia bipunctata (Coleoptera: Coccinellidae). Environmental Entomology, 30: 947952.Google Scholar
Frazer, B.D. 1972. Life tables and intrinsic rates of increase of apterous black bean aphids and pea aphids, on broad bean (Homoptera: Aphididae). The Canadian Entomologist, 104: 17171722.Google Scholar
Frazer, B.D., and Gill, B. 1981. Age, fecundity, weight, and the intrinsic rate of increase of the lupine aphid Macrosiphum albifrons (Homoptera: Aphididae). The Canadian Entomologist, 113: 739745.Google Scholar
Furman, D.P. 1966. Biological studies on Haemolaelaps centrocarpus Berlese (Acarina: Laelapidae) with observations on its classification. Journal of Medical Entomology, 2: 331335.Google Scholar
Gaum, W.G., Giliomee, J.H., and Pringle, K.L. 1994. Life history and life tables of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on English cucumbers. Bulletin of Entomological Research, 84:219224.Google Scholar
Gerling, D., Conde, J.E., and Rabinovich, J.E. 1976. The comparative development of two egg parasites of Rhodnius prolixus (Hemiptera: Reduviidae), vector of Chagas' disease in Venezuela. The Canadian Entomologist, 108:427432.Google Scholar
Gerling, D., Spivak, D., and Vinson, S.B. 1987. Life history and host discrimination of Encarsia deserti (Hymenoptera: Aphelinidae), a parasitoid of Bemisia tabaci (Homoptera: Aleyrodidae). Annals of the Entomological Society of America, 80:224229.Google Scholar
Gerson, U., Capua, S., and Thorens, D. 1983. Life history and life tables of Rhizoglyphus robini Claparède (Acari: Astigmata: Acaridae). Acarologia, 24:439448.Google Scholar
Giles, K.L., Stockland, R., Madden, R.D., Payton, M.E., and Dillwith, J.W. 2001. Preimaginal survival and development of Coleomegilla maculata and Hippodamia convergens (Coleoptera: Coccinellidae) reared on Acyrthosiphon pisum: effects of host plants. Environmental Entomology, 30:964971.Google Scholar
Gillespie, D.R., Opit, G., and Roitberg, B. 2000. Effects of temperature and relative humidity on development, reproduction, and predation in Feltiella acarisuga (Vallot) (Diptera: Cecidomyiidae). Biological Control, 17:132138.Google Scholar
Girma, M., Wilde, G., and Reese, J.C. 1990. Influence of temperature and plant growth stage on development, reproduction, life span, and intrinsic rate of increase of the Russian wheat aphid (Homoptera: Aphididae). Environmental Entomology, 19:14381442.Google Scholar
Giron, A.R. 1978. Notes on the biology and diapause inducement of the hyperparasite Gelis tenellus. Annals of the Entomological Society of America, 71:827829.Google Scholar
Gitonga, L.M., Lohr, B., Overholt, W.A., Magambo, J.K., and Mueke, J.M. 2002. Effect of temperature on the development of Orius albidipennis Reuter, a predator of the African legume flower thrips, Megalurothrips sjostedti Trybom. Insect Science and its Application, 22:215220.Google Scholar
Gotoh, T. 1983. Life-history parameters of three species of Schizotetranychus on deciduous trees (Acarina: Tetranychidae). Applied Entomology and Zoology, 18:122128.Google Scholar
Gotoh, T. 1986. Life-history parameters of the hawthorn spider mite, Tetranychus viennensis Zacher (Acarina: Tetranychidae), on deciduous oak. Applied Entomology and Zoology, 21:389393.Google Scholar
Gotoh, T. 1987 a. Life-history parameters of two species of the genus Eotetranychus (Acarina: Tetranychidae) on deciduous trees. Applied Entomology and Zoology, 22:4551.Google Scholar
Gotoh, T. 1987 b. Life-history parameters of Panonychus ulmi (Koch) (Acarina: Tetranychidae) on dwarf bamboo. Applied Entomology and Zoology, 22:112114.Google Scholar
Gotoh, T. 1987 c. Comparison of life-history parameters of two forms of Panonychus akitanus Ehara (Acarina: Tetranychidae). Applied Entomology and Zoology, 22:119124.Google Scholar
Gotoh, T., and Gomi, K. 2003. Life-history traits of the Kanzawa spider mite Tetranychus kanzawai (Acari: Tetranychidae). Applied Entomology and Zoology, 38:714.Google Scholar
Gotoh, T., and Nagata, T. 2001. Development and reproduction of Oligonychus coffeae (Acari: Tetranychidae) on tea. International Journal of Acarology, 27:293298.Google Scholar
Graf, B., Baumgärtner, J., and Delucchi, V. 1985. Life table statistics of three apple aphids, Dysaphis plantaginea, Rhopalosiphum insertum, and Aphis pomi (Homoptera, Aphididae), at constant temperatures. Zeitschrift für Angewandte Entomologie, 99:285294.Google Scholar
Grant, J.F., and Shepard, M. 1984. Laboratory biology of Meteorus autographae (Hymenoptera: Braconidae), an indigenous parasitoid of soybean looper (Lepidoptera: Noctuidae) larvae. Environmental Entomology, 13:838842.Google Scholar
Gray, L.J. 1981. Species composition and life histories of aquatic insects in a lowland Sonoran desert stream. American Midland Naturalist, 106:229242.Google Scholar
Greenberg, B., and Tantawi, T.I. 1993. Different developmental strategies in two boreal blow flies (Diptera: Calliphoridae). Journal of Medical Entomology, 30:481484.Google Scholar
Greenberg, S.M., Legaspi, B.C. Jr, Jones, W.A., and Enkegaard, A. 2000. Temperature-dependent life history of Eretmocerus eremicus (Hymenoptera: Aphelinidae) on two whitefly hosts (Homoptera: Aleyrodidae). Environmental Entomology, 29:851860.Google Scholar
Grissa-Lebdi, K., Van Impe, G., and Lebrun, P. 2002. Demographic traits of Eotetranychus pruni from Belgian and Tunisian orchards, in comparison with Tetranychus urticae. Experimental and Applied Acarology, 26:209217.Google Scholar
Grüber, K., and Dixon, A.F.G. 1988. The effect of nutrient stress on development and reproduction in an aphid. Entomologia Experimentalis et Applicata, 47:2330.Google Scholar
Gupta, S.K., Dhooria, M.S., and Sidhu, A.S. 1975. Effect of food and temperature on the development, longevity and fecundity of sugarcane red spider mite, Oligonychus indicus (Hirst). Acarologia, 16:436440.Google Scholar
Gutierrez, A.P., Morgan, D.J., and Havenstein, D.E. 1971. The ecology of Aphis craccivora Koch and subterranean clover stunt virus. I. The phenology of aphid populations and the epidemiology of the virus in pastures in south-east Australia. Journal of Applied Ecology, 8:699721.Google Scholar
Hafez, S.M., Rasmy, A.H., and Elsawy, S.A. 1983. Effect of prey species and stages on predatory efficiency and development of the stigmaeid mite, Agistemus exsertus. Acarologia, 24:281283.Google Scholar
Haines, C.P. 1981. Laboratory studies on the role of an egg predator, Blattisocius tarsalis (Berlese) (Acari: Ascidae), in relation to the natural control of Ephestia cautella (Walker) (Lepidoptera: Pyralidae) in warehouses. Bulletin of Entomological Research, 71:555574.Google Scholar
Hambleton, E.J. 1938. A ocorrencia do acaro tropical “Tarsonemus latus Banks” (Acar., Tarsonemidae) causador da rasgadura das folhas nos algodoais de S. Paulo. Arquivos do Instituto Biologico, Sao Paulo, 9:201209.Google Scholar
Hansen, L.S. 2000. Development time and activity threshold of Trichogramma turkestanica on Ephestia kuehniella in relation to temperature. Entomologia Experimentalis et Applicata, 96:185188.Google Scholar
Harris, K.M., and Schreiner, I.H. 1992. A new species of gall midge (Diptera: Cecidomyiidae) attacking mango foliage in Guam, with observations on its pest status and biology. Bulletin of Entomological Research, 82:4148.Google Scholar
Harrison, J.O. 1965. Studies on the biology of Elachertus ceramidiae (Hymenoptera: Eulophidae), a parasite of the banana pest Ceramidia butleri (Lepidoptera: Syntomidae). Annals of the Entomological Society of America, 58:6466.Google Scholar
Harrison, W.W., King, E.G., and Ouzts, J.D. 1985. Development of Trichogramma exiguum and T. pretiosum at five temperature regimes. Environmental Entomology, 14:118121.Google Scholar
Hauer, F.R., and Benke, A.C. 1991. Rapid growth of snag-dwelling chironomids in a blackwater river: the influence of temperature and discharge. Journal of the North American Benthological Society, 10:154164.Google Scholar
Hayakawa, D.L., Grafius, E., and Stehr, F.W. 1990. Effects of temperature on longevity, reproduction, and development of the asparagus aphid (Homoptera: Aphididae) and the parasitoid, Diaeretiella rapae (Hymenoptera: Braconidae). Environmental Entomology, 19:890897.Google Scholar
Hazan, A., Gerson, U., and Tahori, A.S 1974. Life history and life table of the carmine spider mite. Acarologia, 15:414440.Google ScholarPubMed
Hegazi, E.M., El-Gayar, F.H., Rawash, I.A., and Ali, S.A. 1978. Factors affecting the bionomics of Piophila casei (L.). Zeitschrift für Angewandte Entomologie, 85:327335.Google Scholar
Herbert, H.J. 1961. Influence of various numbers of prey on rate of development, oviposition, and longevity of Typhlodromus pyri Scheuten (Acarina: Phytoseiidae) in the laboratory. The Canadian Entomologist, 93:380384.Google Scholar
Herbert, H.J. 1981 a. Biology, life tables, and intrinsic rate of increase of the European red mite, Panonychus ulmi (Acarina: Tetranychidae). The Canadian Entomologist, 113:6571.Google Scholar
Herbert, H.J. 1981 b. Biology, life tables, and innate capacity for increase of the twospotted spider mite, Tetranychus urticae (Acarina: Tetranychidae). The Canadian Entomologist, 113:371378.Google Scholar
Hintze-Podufal, C., and Thorns, H.J. 1979. Development of poplar aphids (Chaitophorus leucomelas) on leaf discs at 15 °C and 25 °C. Zeitschrift für Angewandte Entomologie, 87:388392.Google Scholar
Hirano, K., Honda, K., and Miyai, S. 1996. Effects of temperature on development, longevity and reproduction of the soybean aphid, Aphis glycines (Homoptera: Aphididae). Applied Entomology and Zoology, 31:178180.Google Scholar
Ho, C.-C. 1989. Studies on the biology of Macrocheles muscaedomesticae (Scopoli) (Acarina: Macrochelidae). Chinese Journal of Entomology, Special Publication, 3:181187.Google Scholar
Ho, C.-C., and Chen, W.-H. 1998. Life history, food consumption, and seasonal occurrence of Feltiella minuta (Diptera: Cecidomyiidae) on eggplant. Zhonghua Kunchong, 18:2737. [In Chinese.]Google Scholar
Hodjat, S.H., and Bishop, G.W. 1978. Effects of crowding on clonal cultures of Myzus persicae (Sulz.). Entomologia Experimentalis et Applicata, 24:178184.Google Scholar
Hokyo, N., Kiritani, K., Nakasuji, F., and Shiga, M. 1966. Comparative biology of the two scelionid egg parasites of Nezara viridula L. (Hemiptera: Pentatomidae). Applied Entomology and Zoology, 1:94102.Google Scholar
Honda, J.Y., Nakashima, Y., and Hirose, Y. 1998. Development, reproduction and longevity of Orius minutus and Orius sauteri (Heteroptera: Anthocoridae) when reared on Ephestia kuehniella eggs. Applied Entomology and Zoology, 33:449453.Google Scholar
Honěk, A., and Kocourek, F. 1990. Temperature and development time in insects: a general relationship between thermal constants. Zoologische Jahrbucher, Abteilung für Systematik, Okologie und Geographie der Tiere, 117:401439.Google Scholar
Huber, J.T., Coté, S., and Boivin, G. 1997. Description of three new Anaphes species (Hymenoptera: Mymaridae), egg parasitoids of the carrot weevil, Listronotus oregonensis (LeConte) (Coleoptera: Curculionidae), and redescription of Anaphes sordidatus Girault. The Canadian Entomologist, 129:959977.Google Scholar
Hughes, D., and Bryce, M.A. 1984. Biological characterization of two biotypes of pea aphid, one susceptible and the other resistant to fungal pathogens, coexisting on lucerne in Australia. Entomologia Experimentalis et Applicata, 36: 225229.Google Scholar
Hughes, R.D., Greenham, P.M., Tyndale-Biscoe, M., and Walker, J.M. 1972. A synopsis of observations on the biology of the Australian bushfly (Musca vetustissima Walker). Journal of the Australian Entomological Society, 11:311331.Google Scholar
Hulshof, J., Ketoja, E., and Vänninen, I. 2003. Life history characteristics of Frankliniella occidentalis on cucumber leaves with and without supplemental food. Entomologia Experimentalis et Applicata, 108:1932.Google Scholar
Hussein, M.Y., Yahya, H.J., and Schilthuzen, M. 1996. A new egg parasitoid for possible biological control of the asiatic maize borer in Malaysia. Pertanika Journal of Tropical Agricultural Science, 19:111116.Google Scholar
Hussey, N.W., and Gurney, B. 1967. Bionomics and control of Tarsonemus myceliophagus (Acarina: Tarsonemidae) in mushroom composts. Entomologia Experimentalis et Applicata, 10:287294.Google Scholar
Hutchison, W.D., and Hogg, D.B. 1984. Demographic statistics for the pea aphid (Homoptera: Aphididae) in Wisconsin and a comparison with other populations. Environmental Entomology, 13:11731181.Google Scholar
Hutchison, W.D., Butler, G.D. Jr., and Martin, J.M. 1986. Temperature-dependent development, mortality, and longevity of Microplitis rufiventris (Hymenoptera: Braconidae), a parasitoid of the beet armyworm (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 79:262265.Google Scholar
Hutchison, W.D., Moratorio, M., and Martin, J.M. 1990. Morphology and biology of Trichogrammatoidea bactrae (Hymenoptera: Trichogrammatidae), imported from Australia as a parasitoid of pink bollworm (Lepidoptera: Gelechiidae) eggs. Annals of the Entomological Society of America, 83:4654.Google Scholar
Icuma, I.M., and Hirose, Y. 1996. Effects of temperature on development and survival of the egg parasitoid Telenomus triptus Nixon (Hymenoptera: Scelionidae) in two pentatomid hosts. Applied Entomology and Zoology, 31:168170.Google Scholar
Isenhour, D.J. 1986. Developmental time, adult reproductive capability, and longevity of Campoletis sonorensis (Hymenoptera: Ichneumonidae) as a parasitoid of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 79:893897.Google Scholar
Isenhour, D.J., and Yeargan, K.V. 1981. Effect of temperature on the development of Orius insidiosus, with notes on laboratory rearing. Annals of the Entomological Society of America, 74:114116.Google Scholar
Jackson, C.G., and Butler, G.D. Jr., 1984. Development time of three species of Bracon (Hymenoptera: Braconidae) on the pink bollworm (Lepidoptera: Gelechiidae) in relation to temperature. Annals of the Entomological Society of America, 77:539542.Google Scholar
Jackson, P.R., Hunter, P.E., and Payne, J.A. 1983. Biology of the pecan leaf scorch mite (Acari: Tetranychidae). Environmental Entomology, 12:5559.Google Scholar
Jalil, M. 1972. A note on the life cycle of Platy nothrus peltifer. Journal of the Kansas Entomological Society, 45:309311.Google Scholar
James, D.G. 1986. Effect of temperature upon energy reserves of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Danaidae). Australian Journal of Zoology, 34:373379.Google Scholar
James, D.G., and Warren, G.N. 1991. Effect of temperature on development, survival, longevity and fecundity of Trissolcus oenone Dodd (Hymenoptera: Scelionidae). Journal of the Australian Entomological Society, 30:303306.Google Scholar
Jansson, R.K., and Smilowitz, Z. 1985. Development and reproduction of the green peach aphid, Myzus persicae (Homoptera: Aphididae), on upper and lower leaves of three potato cultivars. The Canadian Entomologist, 117:247252.Google Scholar
Jarjees, E.A., and Merritt, D.J. 2002. Development of Trichogramma australicum Girault (Hymenoptera: Trichogrammatidae) in Helicoverpa (Lepidoptera: Noctuidae) host eggs. Australian Journal of Entomology, 41:310315.Google Scholar
Jeppson, L.R., Keifer, H.H., and Baker, E.W. 1975. Mites injurious to economic plants. University of California Press, Berkeley, California.Google Scholar
Johnson, S.J., and Smith, J.W. Jr., 1980. Biology of Orgilus elasmopalpi [Hym.: Braconidae] with Elasmopalpus lignosellus [Lep.: Pyralidae] as host. Annals of the Entomological Society of America, 73:572575.Google Scholar
Jonsson, B., and Sandlund, O.T. 1975. Notes on winter activity of two Diamesa species (Diptera: Chironomidae) from Voos, Norway. Norwegian Journal of Entomology, 22:16.Google Scholar
Jowyk, E.A., and Smilowitz, Z. 1978. A comparison of growth and developmental rates of the parasite Hyposoter exiguae reared from two instars of its host, Trichoplusia ni. Annals of the Entomological Society of America, 71:467472.Google Scholar
Kaakeh, W., and Dutcher, J.D. 1992. Estimation of life parameters of Monelliopsis pecanis, Monellia caryella, and Melanocallis caryaefoliae (Homoptera: Aphididae) on single pecan leaflets. Environmental Entomology, 21:632639.Google Scholar
Kairo, M.T.K., and Murphy, S.T. 1999. Temperature and plant nutrient effects on the development, survival and reproduction of Cinara sp. nov., an invasive pest of cypress trees in Africa. Entomologia Experimentalis et Applicata, 92:147156.Google Scholar
Kamata, N., and Igarashi, M. 1995. Relationship between temperature, number of instars, larval growth, body size, and adult fecundity of Quadricalcarifera punctatella (Lepidoptera: Notodontidae): cost-benefit relationship. Environmental Entomology, 24:648656.Google Scholar
Kasuga, S., and Amano, H. 2000. Influence of temperature on the life history parameters of Tyrophagus similis Volgin (Acari: Acaridae). Applied Entomology and Zoology, 35:237244.Google Scholar
Kawaguchi, M., and Tanaka, T. 1999. Biological characteristics of a larval endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae): host stage preference, subsequent sex ratio of progeny and mate location of males. Applied Entomology and Zoology, 34:213221.Google Scholar
Kerns, D.L., Puterka, G.J., and Peters, D.C. 1989. Intrinsic rate of increase for greenbug (Homoptera: Aphididae) biotypes E, F, G, and H on small grain and sorghum varieties. Environmental Entomology, 18:10741078.Google Scholar
Kersting, U., Satar, S., and Uygun, N. 1999. Effect of temperature on development rate and fecundity of apterous Aphis gossypii Glover (Hom., Aphididae) reared on Gossypium hirsutum L. Journal of Applied Entomology, 123:2327.Google Scholar
Kfir, R., and Luck, R.F. 1984. Effects of temperature and relative humidity on developmental rate and adult life span of three Aphytis species (Hym., Aphelinidae) parasitising California red scale. Zeitschrift für Angewandte Entomologie, 97:314320.Google Scholar
Kieckhefer, R.W., Elliott, N.C., and Walgenbach, D.D. 1989. Effects of constant and fluctuating temperatures on developmental rates and demographic statistics of the English grain aphid (Homoptera: Aphididae). Annals of the Entomological Society of America, 82:701706.Google Scholar
Kim, T.H., and Eckenrode, C.J. 1987. Bionomics of the bean seed maggot Delia florilega (Diptera: Anthomyiidae) under controlled conditions. Environmental Entomology, 16:881886.Google Scholar
Kinn, D.N. 1984. Life cycle of Dendrolaelaps neodisetus (Mesostigmata: Digamasellidae), a nematophagous mite associated with pine bark beetles (Coleoptera: Scolytidae). Environmental Entomology, 13:11411144.Google Scholar
Kinn, D.N., and Witcosky, J.J. 1977. The life cycle and behaviour of Macrocheles boudreauxi Krantz. Zeitschrift für Angewandte Entomologie, 84:136144.Google Scholar
Kirkland, R.L., Peries, I.D., and Hamilton, G.C. 1981. Differentiation and developmental rate of nymphal instars of greenbug reared on sorghum. Journal of the Kansas Entomological Society, 54:743747.Google Scholar
Kivan, M., and Kilic, N. 2002. Host preference: parasitism, emergence and development of Trissolcus semistriatus (Hym., Scelionidae) in various host eggs. Journal of Applied Entomology, 126:395399.Google Scholar
Klok, C.J., and Chown, S.L. 1999. Assessing the benefits of aggregation: thermal biology and water relations of anomalous Emperor Moth caterpillars. Functional Ecology, 13:417427.Google Scholar
Knisley, C.B., and Swift, F.C. 1971. Biological studies of Amblyseius umbraticus (Acarina: Phytoseiidae). Annals of the Entomological Society of America, 64:813822.Google Scholar
Komazaki, S. 1982. Effects of constant temperatures on population growth of three aphid species, Toxoptera citricidus (Kirkaldy), Aphis citricola van der Goot and Aphis gossypii Glover (Homoptera: Aphididae) on citrus. Applied Entomology and Zoology, 17:7581.Google Scholar
Kouamé, K.L., and Mackauer, M. 1992. Influence of starvation on development and reproduction in apterous virginoparae of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). The Canadian Entomologist, 124: 8795.Google Scholar
Kramer, D.A., and Hain, F.P. 1989. Effect of constant and variable-humidity and temperature regimes on the survival and developmental periods of Oligonychus ununguis (Acarina: Tetranychidae) and Neoseiulus fallacis (Acarina: Phytoseiidae). Environmental Entomology, 18:741746.Google Scholar
Krips, O.E., Witul, A., Willems, P.E.L., and Dicke, M. 1998. Intrinsic rate of population increase of the spider mite Tetranychus urticae on the ornamental crop gerbera: intraspecific variation in host plant and herbivore. Entomologia Experimentalis et Applicata, 89:159168.Google Scholar
Kropczynska, D., Van de Vrie, M., and Tomczyk, A. 1988. Bionomics of Eotetranychus tiliarium and its phytoseiid predators. Experimental and Applied Acarology, 5:6581.Google Scholar
Krüger, K., and Mills, N.J. 1990. Observations on the biology of three parasitoids of the spruce bark beetle, Ips typographus (Col., Scolytidae): Coeloides bostrychorum, Dendrosoter middendorffii (Hym., Braconidae) and Rhopalicus tutela (Hym., Pteromalidae). Journal of Applied Entomology, 110:281291.Google Scholar
Kunnalaca, S., and Mueller, A.J. 1979. A laboratory study of Apanteles marginiventris, a parasite of green cloverworm. Environmental Entomology, 8:365368.Google Scholar
Kunz, S.E., Berry, I.L., and Foerster, K.W. 1977. The development of the immature forms of Stomoxys calcitrans. Annals of the Entomological Society of America, 70:169178.Google Scholar
Kuo, M.-H., and Chiang, T.-Y. 1999. Population parameters of Aphis nerii and the effect of temperature on its development. Zhonghua Kunchong, 19:297306. [In Chinese.]Google Scholar
Kuramochi, K. 1985. Studies on the reproductive biology of the horn fly, Haematobia irritans (L.) (Diptera: Muscidae). II. Effect of temperature on follicle development and blood meal volume of laboratory-reared flies. Applied Entomology and Zoology, 20:264270.Google Scholar
Kureck, A., and Fontes, R.J. 1996. The life cycle and emergence of Ephoron virgo, a large potamal mayfly that has returned to the River Rhine. Archiv für Hydrobiologie Supplement, 113:319323.Google Scholar
Lactin, D.J., Holliday, N.J., Johnson, D.L., and Craigen, R. 1995. Improved rate model of temperature-dependent development by arthropods. Environmental Entomology, 24:6875.Google Scholar
Lagace, C.F. 1969. Observations on the biology of Mesidia nigra, a parasite of Iziphya punctata. Annals of the Entomological Society of America, 62:532536.Google Scholar
Laing, D.R., and Caltagirone, L.E. 1969. Biology of Habrobracon lineatellae (Hymenoptera: Braconidae). The Canadian Entomologist, 101:135142.Google Scholar
Laing, J.E. 1968. Life history and life table of Phytoseiulus persimilis Anthias-Henriot. Acarologia, 10:578588.Google Scholar
Laing, J.E. 1969. Life history and life table of Tetranychus urticae Koch. Acarologia, 11:3342.Google Scholar
Lamb, R.J. 1992. Developmental rate of Acyrthosiphon pisum (Homoptera: Aphididae) at low temperatures: implications for estimating rate parameters for insects. Environmental Entomology, 21:1019.Google Scholar
Lamb, R.J., Gerber, G.H., and Atkinson, G.H. 1984. Comparison of developmental rate curves applied to egg hatching data of Entomoscelis americana Brown (Coleoptera: Chrysomelidae). Environmental Entomology, 13:868872.Google Scholar
Landwehr, V.R., and Allen, W.W. 1982. Life history of Oligonychus subnudus and O. milleri (Acari: Tetranychidae) and influence of temperature on development, survival, and oviposition. Annals of the Entomological Society of America, 75:340345.Google Scholar
Laudien, H. 1973. Changing reaction systems. In Temperature and life. Edited by Precht, H., Christopherson, J., Hensel, H., and Larcher, J.SpringerVerlag, New York. pp. 355399.Google Scholar
Lawrence, R.K., Houseweart, M.W., Jennings, D.T., Southard, S.G., and Halteman, W.A. 1985. Development rates of Trichogramma minutum (Hymenoptera: Trichogrammatidae) and implications for timing augmentative releases for suppression of egg populations of Choristoneura fumiferana (Lepidoptera: Tortricidae). The Canadian Entomologist, 117:556563.Google Scholar
Lebrun, P. 1970. Ecologie et biologie de Nothrus palustris (C.L. Koch) 3ème note: cycle de vie. Acarologia, 12:193207.Google Scholar
Lebrun, P. 1971. Ecologie et biocenotique de quelques peuplements d'arthropodes édaphiques. Memoires de l'Institut Royal des Sciences Naturelles de Belgique, 165:1203.Google Scholar
Lee, J.-H., and Ahn, J.J. 2000. Temperature effects on development, fecundity, and life table parameters of Amblyseius womersleyi (Acari: Phytoseiidae). Environmental Entomology, 29:265271.Google Scholar
Lee, M.S., and Davis, D.W. 1968. Life history and behavior of the predatory mite Typhlodromus occidentalis in Utah. Annals of the Entomological Society of America, 61:251255.Google Scholar
Leibee, G.L. 1984. Influence of temperature on development and fecundity of Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) on celery. Environmental Entomology, 13:497501.Google Scholar
Levot, G.W., Brown, K.R., and Shipp, E. 1979. Larval growth of some calliphorid and sarcophagid Diptera. Bulletin of Entomological Research, 69:469475.Google Scholar
Lim, G.T. 1986. Biological studies on Trichogrammatoidea bactrae fumata Nagaraja in the laboratory. Journal of Applied Entomology, 101:4854.Google Scholar
Lindquist, E.E. 1983. Some thoughts on the potential for use of mites in biological control, including a modified concept of “parasitoids”. In Biological control of pests by mites. Edited by Hoy, M.A., Cunningham, G.L., and Knutson, L.. Special Publication 3304, Agricultural Experiment Station, Division of Agriculture and Natural Resources, University of California, Berkeley. pp.1220.Google Scholar
Lindquist, E.E. 1986. The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic and systematic revision, with a reclassification of family-group taxa in the Heterostigmata. Memoirs of the Entomological Society of Canada, 136:1517.Google Scholar
Lindquist, E.E., and Bedard, W.D. 1961. Biology and taxonomy of mites of the genus Tarsonemoides (Acarina: Tarsonemidae) parasitizing eggs of bark beetles of the genus Ips. The Canadian Entomologist, 93:982999.Google Scholar
Liu, S.-S. 1985. Aspects of the numerical and functional responses of the aphid parasite, Aphidius sonchi, in the laboratory. Entomologia Experimentalis et Applicata, 37:247256.Google Scholar
Liu, S.-S., and Carver, M. 1985. Studies on the biology of Aphidius sonchi Marshall (Hymenoptera: Aphidiidae), a parasite of the sowthistle aphid, Hyperomyzus lactucae (L.) (Hemiptera: Aphididae). Bulletin of Entomological Research, 75:199208.Google Scholar
Liu, S.-S., and Hughes, R.D. 1984 a. The relationships between temperature and rate of development in two geographic stocks of Aphidius sonchi in the laboratory. Entomologia Experimentalis et Applicata, 36:231238.Google Scholar
Liu, S.-S., and Hughes, R.D. 1984 b. Effect of host age at parasitization by Aphidius sonchi on the development, survival, and reproduction of the sowthistle aphid, Hyperomyus lactucae. Entomologia Experimentalis et Applicata, 36:239246.Google Scholar
Liu, S.-S., and Hughes, R.D. 1987. The influence of temperature and photoperiod on the development, survival and reproduction of the sowthistle aphid, Hyperomyzus lactucae. Entomologia Experimentalis et Applicata, 43:3138.Google Scholar
Liu, S.-S., and Meng, X.-D. 1999. Modelling development time of Myzus persicae (Hemiptera: Aphididae) at constant and natural temperatures. Bulletin of Entomological Research, 89:5563.Google Scholar
Liu, S.-S., and Meng, X.-D. 2000. Modelling development time of Lipaphis erysimi (Hemiptera: Aphididae) at constant and variable temperatures. Bulletin of Entomological Research, 90:337347.Google Scholar
Liu, S.-S., Wang, X.-G., Shi, Z.-H., and Gebremeskel, F.B. 2001. The biology of Diadromus collaris (Hymenoptera: Ichneumonidae), a pupal parasitoid of Plutella xylostella (Lepidoptera: Plutellidae), and its interactions with Oomyzus sokolowskii (Hymenoptera: Eulophidae). Bulletin of Entomological Research, 91:461469.Google Scholar
Liu, S.-S., Chen, F.-Z., and Zalucki, M.P. 2002. Development and survival of the diamondback moth (Lepidoptera: Plutellidae) at constant and alternating temperatures. Environmental Entomology, 31:221231.Google Scholar
Liu, T.-X., and Stansly, P.A. 1996. Oviposition, development, and survivorship of Encarsia pergandiella (Hymenoptera: Aphelinidae) in four instars of Bemisia argentifolii (Homoptera: Aleyrodidae). Annals of the Entomological Society of America, 89:96102.Google Scholar
Lo, K.-C., and Ho, C.-C. 1979. Ecological observations on rice tarsonemid mite, Steneotarsonemus spinki (Acarina: Tarsonemidae). Journal of Agricultural Research China, 28:181192. [In Chinese, English summary.]Google Scholar
Lopes, R.B., and Alves, S.B. 2000. Criação e observações preliminares da biologia de Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) em Feijão-de-Porco Canavalia ensiformis (L.). Anais da Sociedade Entomologica do Brasil,29:3947.Google Scholar
Lowry, V.K., Smith, J.W. Jr, and Mitchell, F.L. 1992. Life-fertility tables for Frankliniella fusca (Hinds) and F. occidentalis (Pergande) (Thysanoptera: Thripidae) on peanut. Annals of the Entomological Society of America, 85:744754.Google Scholar
Lublinkhof, J., and Foster, D.E. 1977. Development and reproductive capacity of Frankliniella occidentalis (Thysanoptera: Thripidae) reared at three temperatures. Journal of the Kansas Entomological Society, 50:313316.Google Scholar
Lykouressis, D.P. 1985. Temperature requirements of Sitobion avenae (F.) necessary for ecological studies, by assessing methods for the estimation of instar duration. Zeitschrift für Angewandte Entomologie, 100:479493.Google Scholar
Lysyk, T.J. 1991. Use of life history parameters to improve a rearing method for horn fly, Haematobia irritans irritans (L.) (Diptera: Muscidae), on bovine hosts. The Canadian Entomologist, 123:11991207.Google Scholar
Lysyk, T.J. 1998 a. Relationships between temperature and life-history parameters of Stomoxys calcitrans (Diptera: Muscidae). Journal of Medical Entomology, 35:107119.Google Scholar
Lysyk, T.J. 1998 b. Relationships between temperature and life history parameters of Trichomalopsis sarcophagae (Hymenoptera: Pteromalidae). Environmental Entomology, 27:488498.Google Scholar
Lysyk, T.J. 2001 a. Relationships between temperature and life history parameters of Muscidifurax zaraptor (Hymenoptera: Pteromalidae). Environmental Entomology, 30:147156.Google Scholar
Lysyk, T.J. 2001 b. Relationships between temperature and life history parameters of Muscidifurax raptorellus (Hymenoptera: Pteromalidae). Environmental Entomology, 30:982992.Google Scholar
Lysyk, T.J., and Axtell, R.C. 1987. A simulation model of house fly (Diptera: Muscidae) development in poultry manure. The Canadian Entomologist, 119:427437.Google Scholar
Mackauer, M. 1973. The population growth of the pea aphid biotype R1 on broad bean and pea (Homoptera: Aphididae). Zeitschrift für Angewandte Entomologie, 74:343351.Google Scholar
Mackauer, M. 1983. Quantitative assessment of Aphidius smithi (Hymenoptera: Aphidiidae): fecundity, intrinsic rate of increase, and functional response. The Canadian Entomologist, 115:399415.Google Scholar
Mackey, A.P. 1977. Growth and development of larval Chironomidae. Oikos, 28:270275.Google Scholar
Madder, D.J., Surgeoner, G.A., and Helson, B.V. 1983. Number of generations, egg production, and developmental time of Culex pipiens and Culex restuans (Diptera: Culicidae) in southern Ontario. Journal of Medical Entomology, 20:275287.Google Scholar
Mague, D.L., and Streu, H.T. 1980. Life history and seasonal population growth of Oligonychus ilicis infesting Japanese holly in New Jersey. Environmental Entomology, 9:420424.Google Scholar
Mahmood, F. 1997. Life-table attributes of Anopheles albimanus (Wiedemann) under controlled laboratory conditions. Journal of Vector Ecology, 22:103108.Google Scholar
Mallik, B., and ChannaBasavanna, G.P. 1983. Life history and life tables of Tetranychus ludeni and its predator Amblyseius longispinosus (Acari: Tetranychidae; Phytoseiidae). Indian Journal of Acarology, 8:112.Google Scholar
Marchenko, M.I., and Vinogradova, E.B. 1984. Influence of seasonal temperature changes on the rate of carcass destruction by fly larvae. Sudebno-Meditsinskaya Ekspertiza, 4:1114. [In Russian.]Google Scholar
McCaffrey, J.P., and Horsburgh, R.L. 1986. Biology of Orius insidiosus (Heteroptera: Anthocoridae): a predator in Virginia apple orchards. Environmental Entomology, 15:984988.Google Scholar
McCutcheon, G.S., and Harrison, W. 1987. Host range and development of Microplitis rufiventris (Hymenoptera: Braconidae), an imported parasitoid of several lepidopterous pests. Environmental Entomology, 16:855858.Google Scholar
McLachlan, A. 1983. Life-history tactics of rain-pool dwellers. Journal of Animal Ecology, 52: 545561.Google Scholar
McLachlan, A.J., and Yonow, T. 1989. Reproductive strategies in rain-pool dwellers and the model freshwater insect. Hydrobiologia, 171:223230.Google Scholar
McLeod, D.G.R., Whistlecraft, J.R., and Harris, C.R. 1985. An improved rearing procedure for the carrot rust fly (Diptera: Psilidae) with observations on life history and conditions controlling diapause induction and termination. The Canadian Entomologist, 117:10171024.Google Scholar
McMullen, R.D. 1967. The effects of photoperiod, temperature, and food supply on rate of development and diapause in Coccinella novemnotata. The Canadian Entomologist, 99:578586.Google Scholar
McMurtry, J.A., and Scriven, G.T. 1964. Biology of the predaceous mite Typhlodromus rickeri (Acarina: Phytoseiidae). Annals of the Entomological Society of America, 57:362367.Google Scholar
McMurtry, J.A., and Scriven, G.T. 1965. Life-history studies of Amblyseius limonicus, with comparative observations on Amblyseius hibisci (Acarina: Phytoseiidae). Annals of the Entomological Society of America, 58:106111.Google Scholar
McNeil, J.N., and Rabb, R.L. 1973. Life histories and seasonal biology of four hyperparasites of the tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae). The Canadian Entomologist, 105:10411052.Google Scholar
Meier, P.G., and Torres, H.C. 1978. A modified method for rearing midges (Diptera: Chironomidae). Great Lakes Entomologist, 1:8991.Google Scholar
Meyer, J.A., and Mullens, B.A. 1988. Development of immature Fannia spp. (Diptera: Muscidae) at constant laboratory temperatures. Journal of Medical Entomology, 25:165171.Google Scholar
Meyerdirk, D.E., and Moratorio, M.S. 1987. Biology of Anagrus giraulti (Hymenoptera: Mymaridae), an egg parasioid of the beet leafhopper, Circulifer tenellus (Homoptera: Cicadellidae). Annals of the Entomological Society of America, 80:272277.Google Scholar
Michels, G.J. Jr, Lazar, M.D., Fritts, D.A., and Booker, J.D. 1997. Biotype E greenbug reproduction and development through three generations on resistant and susceptible winter wheat genotypes. Southwestern Entomologist, 22:431437.Google Scholar
Micinski, S., Boethel, D.J., and Boudreaux, H.B. 1979. Influence of temperature and photoperiod on development and oviposition of the pecan leaf scorch mite, Eotetranychus hicoriae. Annals of the Entomological Society of America, 72:649654.Google Scholar
Miller, J.C. 1992. Temperature-dependent development of the convergent lady beetle (Coleoptera: Coccinellidae). Environmental Entomology, 21:197201.Google Scholar
Miller, G.W., and Isger, M.B. 1985. Effects of temperature on the development of Liriomyza trifolii (Burgess) (Diptera: Agromyzidae). Bulletin of Entomological Research, 75:321328.Google Scholar
Miller, J.C., and Paustian, J.W. 1992. Temperature dependent development of Eriopis connexa (Coleoptera: Coccinellidae). Environmental Entomology, 21:11391142.Google Scholar
Miller, K.V., and Williams, R.N. 1983. Biology and host preference of Atheta coriari (Coleoptera: Staphylinidae), an egg predator of Nitidulidae and Muscidae. Annals of the Entomological Society of America, 76:158161.Google Scholar
Mishra, R.K. 1979. Bionomics of apholate resistant and normal strain of Musca domestica L. Zeitschrift für Angewandte Entomologie, 88:222224.Google Scholar
Miura, K. 1990 a. Effect of temperature on the development of Gonatocerus cincticipitis Sahad, an egg parasitoid of the green rice leafhopper. Applied Entomology and Zoology, 25:146147.Google Scholar
Miura, K. 1990 b. Life-history parameters of Gonatocerus cincticipitis Sahad (Hym., Mymaridae), an egg parasitoid of the green rice leafhopper, Nephotettix cincticeps Uhler (Hom., Cicadellidae). Journal of Applied Entomology, 110:353357.Google Scholar
Miura, K. 1990 c. Life-history parameters of Paracentrobia andoi (Ishii) (Hymenoptera, Trichogrammatidae), an egg parasitoid of the green rice leafhopper, Nephotettix cincticeps Uhler (Homoptera, Cicadellidae). Japanese Journal of Entomology, 58:585591.Google Scholar
Miura, K., and Kobayashi, M. 1995. Reproductive properties of Trichogramma chilonis females on diamondback moth eggs. Applied Entomology and Zoology, 30:393400.Google Scholar
Miyashita, K. 1997. Breeding and nymphal development of Lycosa coelestis L. Koch. Acta Arachnologia, 46:3337.Google Scholar
Momen, F.M. 1995. Feeding, development and reproduction of Amblyseius barkeri (Acarina: Phytoseiidae) on various kinds of food substances. Acarologia, 36:101105.Google Scholar
Momen, F.M., and El-Saway, S.A. 1993. Biology and feeding behaviour of the predatory mite, Amblyseius swirskii (Acari: Phytoseiidae). Acarologia, 34:199204.Google Scholar
Morales-Ramos, J.A., and Cate, J.R. 1992 a. Rate of increase and adult longevity of Catolaccus grandis (Burks) (Hymenoptera: Pteromalidae) in the laboratory at four temperatures. Environmental Entomology, 21:620627.Google Scholar
Morales-Ramos, J.A., and Cate, J.R. 1992 b. Laboratory determination of age-dependent fecundity, development and rate of increase of Catolaccus grandis (Burks) (Hymenoptera: Pteromalidae). Annals of the Entomological Society of America, 85:469476.Google Scholar
Morales-Ramos, J.A., and Cate, J.R. 1993. Temperature-dependent developmental rates of Catolaccus grandis (Hymenoptera: Pteromalidae). Environmental Entomology, 22:226233.Google Scholar
Morgan, D., Walters, K.F.A., and Aegerter, J.N. 2001. Effect of temperature and cultivar on pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae) life history. Bulletin of Entomological Research, 91:4752.Google Scholar
Mottram, P., Kay, B.H., and Kettle, D.S. 1986. The effect of temperature on eggs and immature stages of Culex annulirostris Skuse (Diptera: Culicidae). Journal of the Australian Entomological Society, 25:131135.Google Scholar
Mullen, M.A. 1981. Sweet potato weevil, Cylas formicarius elegantulus (Summers): development, fecundity, and longevity. Annals of the Entomological Society of America, 74:478481.Google Scholar
Mullens, B.A., and Rutz, D.A. 1983. Development of immature Culicoides variipennis (Diptera: Ceratopogonidae) at constant laboratory temperatures. Annals of the Entomological Society of America, 76:747751.Google Scholar
Murai, T. 2000. Effect of temperature on development and reproduction of the onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), on pollen and honey solution. Applied Entomology and Zoology, 35:499504.Google Scholar
Murai, T. 2001 a. Development and reproductive capacity of Thrips hawaiiensis (Thysanoptera: Thripidae) and its potential as a major pest. Bulletin of Entomological Research, 91:193198.Google Scholar
Murai, T. 2001 b. Life history study of Thrips setosus. Entomologia Experimentalis et Applicata, 100:245251.Google Scholar
Mutch, R.A., and Pritchard, G. 1986. Development rates of eggs of some Canadian stoneflies (Plecoptera) in relation to temperature. Journal of the North American Benthological Society, 5:272277.Google Scholar
Nagai, K., and Yano, E. 1999. Effects of temperature on the development and reproduction of Orius sauteri (Poppius) (Heteroptera: Anthocoridae), a predator of Thrips palmi Karny (Thysanoptera: Thripidae). Applied Entomology and Zoology, 34:223229.Google Scholar
Nakai, Y., and Tsubaki, Y. 1986. Factors accelerating the development of German cockroach (Blattella germanica L.) nymphs reared in groups. Japanese Journal of Applied Entomology and Zoology, 30:16.Google Scholar
Nakata, T. 1995. Effect of rearing temperature on the development of Orius sauteri (Poppius) (Heteroptera: Anthocoridae). Applied Entomology and Zoology, 30:145151.Google Scholar
Naranjo, S.E. 1993. Life history of Trichogrammatoidea bactrae (Hymenoptera: Trichogrammatidae), an egg parasitoid of pink bollworm (Lepidoptera: Gelechiidae), with emphasis on performance at high temperatures. Environmental Entomology, 22:10511059.Google Scholar
Naumann, I.D., and Sands, D.P.A. 1984. Two Australian Elasmus spp. (Hymenoptera: Elasmidae), parasitoids of Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae): their taxonomy and biology. Journal of the Australian Entomological Society, 23:2532.Google Scholar
Nayar, J.K. 1968. Biology of Culex nigripalpus Theobald (Diptera: Culicidae). Part 1: Effects of rearing conditions on growth and the diurnal rhythm of pupation and emergence. Journal of Medical Entomology, 5:3946.Google Scholar
Nebeker, A.V. 1973. Temperature requirements and life cycle of the midge Tanytarsus dissimilis (Diptera: Chironomidae). Journal of the Kansas Entomological Society, 46:160165.Google Scholar
Neubauer, I., Raccah, B., Ishaaya, I., Aharonson, N., and Swirski, E. 1981. The effect of hosts exchange on the population dynamics of the spirea aphid Aphis citricola Van der Goot (Hom., Aphididae). Zeitschrift für Angewandte Entomologie, 91:231236.Google Scholar
Neunzig, H.H. 1969. The biology of the tobacco budworm and the corn earworm in North Carolina: with particular reference to tobacco as a host. North Carolina Agricultural Experiment Station Technical Bulletin 196.Google Scholar
Nielsen, P.S. 2001. Developmental time of Blattisocius tarsalis (Acari: Ascidae) at different temperatures. Experimental and Applied Acarology, 25:605608.Google Scholar
Nikam, P.K., and Pawar, C.V. 1993. Life tables and intrinsic rate of natural increase of Bracon hebetor Say (Hym., Braconidae) population on Corcyra cephalonica Staint. (Lep., Pyralidae), a key parasitoid of Helicoverpa armigera Hbn. (Lep., Noctuidae). Journal of Applied Entomology, 115:210213.Google Scholar
Nikolakakis, N.N., Margaritopoulos, J.T., and Tsitsipis, J.A. 2003. Performance of Myzus persicae (Hemiptera: Aphididae) clones on different host-plants and their host preference. Bulletin of Entomological Research, 93:235242.Google Scholar
Nikolei, E. 1961. Vergleichende Untersuchungen zur Fortpflanzung heterogener Gallmücken unter experimentellen Bedingungen. Zeitschrift für Morphologie und Ökologie der Tiere, 50:281329.Google Scholar
Nishizuka, M., Azuma, A., and Masaki, S. 1998. Diapause response to photoperiod and temperature in Lepisma saccharina Linnaeus (Thysanura: Lepismatidae). Entomological Science, 1:714.Google Scholar
Noda, I. 1960. The emergence of winged viviparous female in aphid. VI. Difference in the rate of development between the winged and unwinged forms. Japan Journal of Ecology, 10:97102.Google Scholar
Norton, R.A. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the astigmata. In Mites: ecological and evolutionary analyses of life-history patterns. Edited by Houck, M.A.. Chapman and Hall, New York, London. pp. 99135.Google Scholar
Nowierski, R.M., Zeng, Z., and Scharen, A.L. 1995. Age-specific life table modeling of the Russian wheat aphid (Homoptera: Aphididae) on barley grown in benzimidazole agar. Environmental Entomology, 24:12841290.Google Scholar
Obrycki, J.J., and Tauber, M.J. 1978. Thermal requirements for development of Coleomegilla maculata (Coleoptera: Coccinellidae) and its parasite Perilitus coccinellae (Hymenoptera: Braconidae). The Canadian Entomologist, 110:407412.Google Scholar
Obrycki, J.J., and Tauber, M.J. 1981. Phenology of three coccinellid species: thermal requirements for development. Annals of the Entomological Society of America, 74:3136.Google Scholar
Obrycki, J.J., and Tauber, M.J. 1982. Thermal requirements for development of Hippodamia convergens (Coleoptera: Coccinellidae). Annals of the Entomological Society of America, 75:678683.Google Scholar
Obrycki, J.J., Tauber, M.J., Tauber, C.A., and Gollands, B. 1985. Edovum puttleri (Hymenoptera: Eulophidae), an exotic egg parasitoid of the Colorado potato beetle (Coleoptera: Chrysomelidae): responses to temperate zone conditions and resistant potato plants. Environmental Entomology, 14:4854.Google Scholar
OConnor, B.M. 1994. Life-history modifications in astigmatid mites. In Mites: ecological and evolutionary analyses of life-history patterns. Edited by Houck, M.A.. Chapman and Hall, New York, London. pp. 136159.Google Scholar
Oetting, R.D., and Yonke, T.R. 1971. Immature stages and biology of Podisus placidus and Stiretrus fimbriatus (Hemiptera: Pentatomidae). The Canadian Entomologist, 103:15051516.Google Scholar
Ohno, M. 1981. Ecological studies of chironomids on Tokyo, Japan. I. Estimation of the number of generations per year of Chironomus yoshimatsui (Diptera, Chironomidae) in the Zempukuji river. Japanese Journal of Ecology, 31:155159. [In Japanese.]Google Scholar
Ohta, I. 2001. Effect of temperature on development of Orius strigicollis (Heteroptera: Anthocoridae) fed on Frankliniella occidentalis (Thysanoptera: Thripidae). Applied Entomology and Zoology, 36:483488.Google Scholar
Ohta, I., and Ohtaishi, M. 2004. Fertility, longevity and intrinsic rate of increase of Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) on the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Applied Entomology and Zoology, 39:113116.Google Scholar
Ohta, I., Miura, K., and Kobayashi, M. 2001. Life history parameters during immature stage of Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) on green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Applied Entomology and Zoology, 36:103109.Google Scholar
Oi, D.H., Sanderson, J.P., Youngman, R.R., and Barnes, M.M. 1989. Developmental times of the Pacific spider mite (Acari: Tetranychidae) on water-stressed almond trees. Environmental Entomology, 18:208212.Google Scholar
Okabe, K. 1993. Developmental period and fecundity of Histiogaster sp. (Acari: Acaridae) on three fungi. Applied Entomology and Zoology, 28:479487.Google Scholar
Okazawa, T., Horio, M., Suzuki, H., and Mogi, M. 1986. Colonization and laboratory bionomics of Topomyia yanbarensis (Diptera: Culicidae). Journal of Medical Entomology, 23:493501.Google Scholar
Okazawa, T., Miyagi, I., Toma, T., Ramalingam, S., and Chang, M.S. 1991. Egg morphology and observations on the laboratory biology of Armigeres (Leicesteria) digitatus (Diptera: Culicidae) from Sarawak. Journal of Medical Entomology, 28:606610.Google Scholar
Olaifa, J.I., and Akingbohungbe, A.E. 1982. Bionomics of Bracon ?hancocki (Wilkinson) (Hymenoptera: Braconidae), a larval parasite of Cydia ptychora (Meyrick) (Lepidoptera: Tortricidae) in Nigeria. Bulletin of Entomological Research, 72:567572.Google Scholar
Olsen, A., Bale, J.S., Leadbeater, B.S.C., Callow, M.E., and Holden, J.B. 2003. Developmental thresholds and day-degree requirements of Paratanytarsus grimmii and Corynoneura scutellata (Diptera: Chironomidae): two midges associated with potable water treatment. Physiological Entomology, 28:315322.Google Scholar
Orphanides, G.M., and Gonzalez, D. 1971. Fertility and life table studies with Trichogramma pretiosum and T. retorridum (Hymenoptera: Trichogrammatidae). Annals of the Entomological Society of America, 64:824834.Google Scholar
Orr, D.B., Boethel, D.J., and Jones, W.A. 1985. Development and emergence of Telenomus chloropus and Trissolcus basalis (Hymenoptera: Scelionidae) at various temperatures and relative humidities. Annals of the Entomological Society of America, 78:615619.Google Scholar
Osakabe, M., Kobayashi, S., and Ashihara, W. 1990. Development of the European red mite, Panonychus ulmi (Koch) (Acari: Tetranychidae), on mulberry and some other plants. Applied Entomology and Zoology, 25:326328.Google Scholar
Økland, B. 1991. Laboratory studies of egg development and diapause in Isoperla obscura (Plecoptera) from a mountain stream in Norway. Freshwater Biology, 25:485495.Google Scholar
Pak, G.A., and Oatman, E.R. 1982 a. Biology of Trichogramma brevicapillum. Entomologia Experimentalis et Applicata, 32:6167.Google Scholar
Pak, G.A., and Oatman, E.R. 1982 b. Comparative life table, behavior and competition studies of Trichogramma brevicapillum and T. pretiosum. Entomologia Experimentalis et Applicata, 32:6879.Google Scholar
Parkman, P., Dusky, J.A., and Waddill, V.H. 1989. Biological studies of Liriomyza sativae (Diptera: Agromyzidae) on castor bean. Environmental Entomology, 18:768772.Google Scholar
Parr, H.C.M. 1962. Studies on Stomoxys calcitrans (L.) in Uganda, East Africa. II. Notes on life-history and behaviour. Bulletin of Entomological Research, 53:437443.Google Scholar
Parrella, M.P., and Kok, L.T. 1977. The development and reproduction of Bedellia somnulentella on hedge bindweed and sweet potato. Annals of the Entomological Society of America, 70:925928.Google Scholar
Patil, N.G., Baker, P.S., and Pollard, G.V. 1994. Life history parameters of the leucaena psyllid Heteropsylla cubana (Crawford) (Homoptera: Psyllidae) under various temperature and relative humidity regimes. Insect Science and its Application, 15:293299.Google Scholar
Patro, B., and Behera, M.K. 2002. Biology and feeding potential of Sphaerophoria javana Wied. (Diptera: Syrphidae) on the bean aphid, Aphis craccivora Koch. Journal of Biological Control, 16:165167.Google Scholar
Perng, J.J. 2002. Life history traits of Aphis gossypii Glover (Hom., Aphididae) reared on four widely distributed weeds. Journal of Applied Entomology, 126:97100.Google Scholar
Perring, T.M., Holtzer, T.O., Toole, J.L., Norman, J.M., and Myers, G.L. 1984 a. Influences of temperature and humidity on pre-adult development of the Banks grass mite (Acari: Tetranychidae). Environmental Entomology, 13:338343.Google Scholar
Perring, T.M., Holtzer, T.O., Kalisch, J.A., and Norman, J.M. 1984 b. Temperature and humidity effects on ovipositional rates, fecundity, and longevity of adult female Banks grass mites (Acari: Tetranychidae). Annals of the Entomological Society of America, 77:581586.Google Scholar
Peters, D.C., Kerns, D., Puterka, G.J., and McNew, R. 1988. Feeding behavior, development, and damage by biotypes B, C, and E of Schizaphis graminum (Homoptera: Aphididae) on ‘Wintermalt’ and ‘Post’ barley. Environmental Entomology, 17:503507.Google Scholar
Pettit, F.L., Loader, C.A., and Schon, M.K. 1994. Reduction of nitrogen concentration in the hydroponic solution on population growth rate of the aphids (Homoptera: Aphididae) Aphis gossypii on cucumber and Myzus persicae on pepper. Environmental Entomology, 23: 930936.Google Scholar
Phillipsen, W.J., and Coppel, H.C. 1977 a. Acotyledon formosani sp. n. associated with the Formosan subterranean termite, Coptotermes formosanus Shiraki (Acarina: Acaridae—Isoptera: Rhinotermitidae). Journal of the Kansas Entomological Society, 50: 399409.Google Scholar
Phillipsen, W.J., and Coppel, H.C. 1977 b. Histiostoma formosana sp.n. associated with the Formosan subterranean termite, Coptotermes formosanus Shiraki (Acarina: Anoetidae —Isoptera: Rhinotermitidae). Journal of the Kansas Entomological Society, 50: 496502.Google Scholar
Phoofolo, M.W., and Obrycki, J.J. 2000. Demographic analysis of reproduction in Nearctic and Palearctic populations of Coccinella septempunctata and Propylea quatuordecimpunctata. BioControl, 45:2543.Google Scholar
Pillai, P.R.P., and Winston, P.W. 1969. Life history and biology of Caloglyphus anomalus Nesbitt (Acarina: Acaridae). Acarologia, 11:295303.Google Scholar
Pimentel, D., Rumsey, M.W., and Streams, F.A. 1960. Rearing tyroglyphid mites on Neurospora. Annals of the Entomological Society of America, 53:549.Google Scholar
Plachter, H. 1983. Cave-dwelling flies in Central Europe: adaption to environment, especially to low temperatures (Diptera, Nematocera: Trichoceridae et Sciaridae). Oecologia, 58:367372.Google Scholar
Plowright, R.C., and Pendrell, B.A. 1977. Larval growth in bumble bees (Hymenoptera: Apidae). The Canadian Entomologist, 109:967973.Google Scholar
Porter, K. 1982. Basking behavior in larvae of the butterfly Euphydryas aurinia. Oikos, 38:308312.Google Scholar
Powell, J.E., Shepard, M., and Sullivan, M.J. 1981. Use of heating degree day and physiological day equations for predicting development of the parasitoid Trissolcus basalis. Environmental Entomology, 10:10081011.Google Scholar
Prasad, V. 1967. Biology of the predatory mite Phytoseiulus macropilis in Hawaii (Acarina: Phytoseiidae). Annals of the Entomological Society of America, 60:905908.Google Scholar
Prasad, N.G., Shakarad, M., Gohil, V.M., Sheeba, V., Rajamani, M., and Joshi, A. 2000. Evolution of reduced pre-adult viability and larval growth rate in laboratory populations of Drosophila melanogaster selected for shorter development time. Genetic Research, 76:249259.Google Scholar
Pratissoli, D., and Parra, J.R.P. 2000. Fertility life table of Trichogramma pretiosum (Hym., Trichogrammatidae) in eggs of Tuta absoluta and Phthorimaea operculella (Lep., Gelechiidae) at different temperatures. Journal of Applied Entomology, 124:339342.Google Scholar
Proctor, H.C., and Pritchard, G. 1990. Variability in the life history of Unionicola crassipes, a spongeassociated water mite (Acari: Unionicolidae). Canadian Journal of Zoology, 68:12271232.Google Scholar
Pruszynski, S., and Cone, W.W. 1973. Biological observations of Typhlodromus occidentalis (Acarina: Phytoseiidae) on hops. Annals of the Entomological Society of America, 66:4751.Google Scholar
Putman, W.L. 1962. Life-history and behaviour of the predacious mite Typhlodromus (T.) caudiglans Schuster (Acarina: Phytoseiidae) in Ontario, with notes on the prey of related species. The Canadian Entomologist, 94:163177.Google Scholar
Puttler, B., and Thewke, S.E. 1970. Biology of Microplitis feltiae (Hymenoptera: Braconidae), a parasite of the black cutworm, Agrotis ipsilon. Annals of the Entomological Society of America, 63:645648.Google Scholar
Puttler, B., Gordh, G., and Long, S.H. 1980. Bionomics of Euplectrus puttleri, new species, an introduced parasite of the velvetbean caterpillar, Anticarsia gemmatalis, from South America. Annals of the Entomological Society of America, 73:2835.Google Scholar
Qureshi, A.H., Oatman, E.R., and Fleschner, C.A. 1969. Biology of the spider mite, Tetranychus evansi. Annals of the Entomological Society of America, 62:898903.Google Scholar
Rahim, A., Hashmi, A.A., and Khan, N.A. 1991. Effects of temperature and relative humidity on longevity and development of Ooencyrtus papilionis Ashmead (Hymenoptera: Eulophidae), a parasite of the sugarcane pest, Pyrilla perpusilla Walker (Homoptera: Cicadellidae). Environmental Entomology, 20:774775.Google Scholar
Rahoo, G.M., and Luff, M.L. 1987. The biology of Adelognathus granulatus Perkins (Hym., Ichneumonidae) a parasitoid of the small gooseberry sawfly, Pristiphora pallipes (Lep.) (Hym., Tenthredinidae). Journal of Applied Entomology, 104:480484.Google Scholar
Raney, H.G., Coles, L.W., Eikenbary, R.D., Morrison, R.D., and Starks, K.J. 1971. Host preference, longevity, developmental period and sex ratio of Aphelinus asychis with three sorghum-fed species of aphids held at controlled temperatures. Annals of the Entomological Society of America, 64:169176.Google Scholar
Rasmy, A.H. 1978. Biology of the citrus brown mite, Eutetranychus orientalis as affected by some citrus species. Acarologia, 19:222224.Google Scholar
Rawlins, J.E., and Lederhouse, R.C. 1981. Developmental influences of thermal behavior on monarch caterpillars (Danaus plexippus): an adaptation for migration (Lepidoptera: Nymphalidae: Danainae). Journal of the Kansas Entomological Society, 54:387408.Google Scholar
Redborg, K.E., Hinesly, T.D., and Ziegler, E.L. 1983. Rearing Psychoda alternata (Diptera: Psychodidae) in the laboratory on digested sewage sludge, with some observations on its biology. Environmental Entomology, 12:412415.Google Scholar
Reis, P.R., and Alves, E.B. 1997. Biologia do ácaro predador Euseius alatus DeLeon (Acari: Phytoseiidae). Anais da Sociedade Entomologica do Brasil, 26:359363.Google Scholar
Reisen, W.K., Siddiqui, T.F., Aslam, Y., and Malik, G.M. 1979. Geographic variation among the life table characteristics of Culex tritaeniorhynchus from Asia. Annals of the Entomological Society of America, 72:700709.Google Scholar
Rice, R.E., and Strong, F.E. 1962. Bionomics of the tomato russet mite, Vasates lycopersici (Massee). Annals of the Entomological Society of America, 55:431435.Google Scholar
Richardson, J.S. 1991. Seasonal food limitation of detritivores in a montane stream: an experimental test. Ecology, 72:873887.Google Scholar
Ridgway, N.M., and Mahr, D.L. 1990. Reproduction, development, longevity, and host mortality of Sympiesis marylandensis (Hymenoptera: Eulophidae), a parasitoid of spotted tentiform leafminer (Lepidoptera: Gracillariidae), in the laboratory. Annals of the Entomological Society of America, 83:795799.Google Scholar
Rivard, I. 1960. A technique for individual rearing of the predacious mite Melichares dentriticus (Berlese) (Acarina: Aceosejidae) with notes on its life history and behaviour. The Canadian Entomologist, 92:834839.Google Scholar
Rivard, I. 1961. Influence of temperature and humidity on mortality and rate of development of immature stages of the mite Tyrophagus putrescentiae (Schrank) (Acarina: Acaridae) reared on mold cultures. Canadian Journal of Zoology, 39:419426.Google Scholar
Rodriguez, J.G., and Stepien, Z.A. 1973. Biology and population dynamics of Caloglyphus berlesei (Michael) (Acarina: Acaridae) in xenic diet. Journal of the Kansas Entomological Society, 46:176183.Google Scholar
Romeis, J., Shanower, T.G., and Madhuri, K. 2000. Biology and field performance of Gryon clavigrallae (Hymenoptera: Scelionidae), an egg parasitoid of Clavigralla spp. (Hemiptera: Coreidae) in India. Bulletin of Entomological Research, 90:253263.Google Scholar
Rosillon, D. 1988. Food preference and relative influence of temperature and food quality on life history characteristics of a grazing mayfly, Ephemerella ignita (Poda). Canadian Journal of Zoology, 66:14741481.Google Scholar
Rout, G., and Senapati, B. 1968. Biology of the mustard aphid, Lipaphis erysimi, in India. Annals of the Entomological Society of America, 61:259261.Google Scholar
Roy, M., Brodeur, J., and Cloutier, C. 2002. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environmental Entomology, 31:177187.Google Scholar
Royer, T.A., Giles, K.L., Kindler, S.D., and Elliott, N.C. 2001. Developmental response of three geographic isolates of Lysiphlebus testaceipes (Hymenoptera: Aphididae) to temperature. Environmental Entomology, 30:637641.Google Scholar
Ruberson, J.R., Tauber, M.J., and Tauber, C.A. 1988. Reproductive biology of two biotypes of Edovum puttleri, a parasitoid of Colorado potato beetle eggs. Entomologia Experimentalis et Applicata, 46:211219.Google Scholar
Ruberson, J.R., Tauber, M.J., and Tauber, C.A. 1989. Intraspecific variability in hymenopteran parasitoids: comparative studies of two biotypes of the egg parasitoid Edovum puttleri (Hymenoptera: Eulophidae). Journal of the Kansas Entomological Society, 62:189202.Google Scholar
Rudzińska, M. 1998. Life history of the phoretic predatory mite Arctoseius semiscissus (Acari: Ascidae) on a diet of sciarid fly eggs. Experimental and Applied Acarology, 22:643648.Google Scholar
Ruf, A. 1996. Life-history patterns in soil-inhabiting mesostogmatid mites (Dermanyssina, Parasitina). In Acarology IX. Vol. I. Proceedings. Edited by Mitchell, R., Horn, D.J.Needham, G.R., and Welbourn, W.C.. Ohio Biological Survey, Columbus, Ohio. pp. 621628.Google Scholar
Sabelis, M.W. 1991. Life-history evolution of spider mites. In The Acari. Reproduction, development and life-history strategies. Edited by Schuster, R. and Murphy, P.W.. Chapman and Hall, London. pp. 2349.Google Scholar
Saha, S., and Raychaudhuri, D. 1996. Temperature specific responses of Aphis gossypii Glover (Homoptera: Aphididae) on Capsicum annuum L. Research Bulletin of the Punjab University, Science, 46:107137.Google Scholar
Sahad, A. 1982. Biology and morphology of Gonatocerus sp. (Hymenoptera, Mymaridae), an egg parasitoid of the green rice leafhopper, Nephotettix cincticeps Uhler (Homoptera, Deltocephalidae). I. Biology. Kontyû, 50:246260.Google Scholar
Saitô, Y. 1979. Comparative studies on life histories of three species of spider mites (Acarina: Tetranychidae). Applied Entomology and Zoology, 14:8394.Google Scholar
Saitô, Y., and Mori, H. 1981. Parameters related to potential rate of population increase of three predacious mites in Japan (Acarina: Phytoseiidae). Applied Entomology and Zoology, 16:4547.Google Scholar
Saitô, Y., and Ueno, J. 1979. Life history studies on Schizotetranychus celarius (Banks) and Aponychus corpuzae Rimando as compared with other tetranychid mite species (Acarina: Tetranychidae). Applied Entomology and Zoology, 14:445452.Google Scholar
Salto, C.E., Eikenbary, R.D., and Starks, K.J. 1983. Compatibility of Lysiphlebus testaceipes (Hymenoptera: Braconidae) with greenbug (Homoptera: Aphididae) biotypes “C” and “E” reared on susceptible and resistant oat varieties. Environmental Entomology, 12:603604.Google Scholar
Sánchez-Ramos, I., and Castañera, P. 2001. Development and survival of Tyrophagus putrescentiae (Acari: Acaridae) at constant temperatures. Environmental Entomology, 30:10821089.Google Scholar
Sanderson, J.P., and McMurtry, J.A. 1984. Life history studies of the predaceous mite Phytoseius hawaiiensis. Entomologia Experimentalis et Applicata, 35:227234.Google Scholar
Sankarperumal, G., and Pandian, T.J. 1991. Effect of temperature and Chlorella density on growth and metamorphosis of Chironomus circumdatus (Kieffer) (Diptera). Aquatic Insects, 13:167177.Google Scholar
Satar, S., and Yokomi, R. 2003. Effect of temperature and host on development of Brachycaudus schwartzi (Homoptera: Aphididae). Annals of the Entomological Society of America, 95:597602.Google Scholar
Saunders, R.C., and Hsiao, T.H. 1970. Biology and laboratory propagation of Amblymerus bruchophagi (Hymenoptera: Pteromalidae), a parasite of the alfalfa seed chalcid. Annals of the Entomological Society of America, 63:744749.Google Scholar
Scheiring, J.F., Davis, D.G., Ranasinghe, A., and Teare, C.A. 1984. Effects of larval crowding on life history parameters in Drosophila melanogaster Meigen (Diptera: Drosophilidae). Annals of the Entomological Society of America, 77:329332.Google Scholar
Schlinger, E.I., and Hall, J.C. 1960. The biology, behavior, and morphology of Praon palitans Muesebeck, an internal parasite of the spotted alfalfa aphid, Therioaphis maculata (Buckton) (Hymenoptera: Braconidae, Aphidiinae). Annals of the Entomological Society of America, 53:144160.Google Scholar
Schlinger, E.I., and Hall, J.C. 1961. The biology, behavior, and morphology of Trioxys (Trioxys) utilis, an internal parasite of the spotted alfalfa aphid, Therioaphis maculata (Hymenoptera: Braconidae, Aphidiinae). Annals of the Entomological Society of America, 54:3445.Google Scholar
Schmidt-Nielsen, K. 1984. Scaling: Why is animal size so important? Cambridge University Press, Cambridge.Google Scholar
Sciarappa, W.J. Jr., and Swift, F.C. 1977. Biological studies of Typhlodromips sessor (Acarina: Phytoseiidae). Annals of the Entomological Society of America, 70:285288.Google Scholar
Scott, J.K., and Yeoh, P.B. 1999. Bionomics and the predicted distribution of the aphid Brachycaudus rumexicolens (Hemiptera: Aphididae). Bulletin of Entomological Research, 89:97106.Google Scholar
Sengonca, C., and Liu, B. 1998. Biological studies on Eretmocerus longipes Compere (Hym., Aphelinidae), a parasitoid of Aleurotuberculatus takahashi David et Subramaniam (Hom., Aleyrodidae) in the laboratory. Journal of Applied Entomology, 122:207211.Google Scholar
Sequeira, R., and Mackauer, M. 1992. Quantitative genetics of body size and development time in the parasitoid wasp Aphidius ervi (Hymenoptera: Aphidiidae). Canadian Journal of Zoology, 70:11021108.Google Scholar
Shahid, A.A., and Reisen, W.K. 1981. Culex tritaeniorhynchus: failure to detect heterosis in the life table characteristics of outcrossed laboratory colonies. Entomologia Experimentalis et Applicata, 30:5862.Google Scholar
Shanower, T.G., Gutierrez, A.P., and Wightman, J.A. 1993. Effect of temperature on development rates, fecundity and longevity of the groundnut leaf miner, Aproaerema modicella (Lepidoptera: Gelechiidae), in India. Bulletin of Entomological Research, 83:413419.Google Scholar
Shibao, M. 1996. Effects of temperature on development of the chillie thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae), on grape. Applied Entomology and Zoology, 31:8186.Google Scholar
Shih, C.-I.T., Poe, S.L., and Cromroy, H.L. 1976. Biology, life table, and intrinsic rate of increase of Tetranychus urticae. Annals of the Entomological Society of America, 69:362364.Google Scholar
Shono, Y., and Hirano, M. 1993. Colonization and rearing of a wild strain of Anopheles sinensis Wiedemann (Diptera: Culicidae). Applied Entomology and Zoology, 28: 571573.Google Scholar
Siddig, M.A., and Elbadry, E.A. 1971. Biology of the spider mite Eutetranychus sudanicus. Annals of the Entomological Society of America, 64:806809.Google Scholar
Siddiqui, W.H., Barlow, C.A., and Randolph, P.A. 1973. Effects of some constant and alternating temperatures on population growth of the pea aphid, Acyrthosiphon pisum (Homoptera: Aphididae). The Canadian Entomologist, 105:145156.Google Scholar
Sigsgaard, L. 2000. The temperature-dependent duration of development and parasitism of three cereal aphid parasitoids, Aphidius ervi A. rhopalosiphi, and Praon volucre. Entomologia Experimentalis et Applicata, 95:173184.Google Scholar
Simon, J.C., Dedryver, C.A., Pierre, J.S., Tanguy, S., and Wegorek, P. 1991. The influence of clone and morph on the parameters of intrinsic rate of increase in the cereal aphids Sitobion avenae and Rhopalosiphum padi. Entomologia Experimentalis et Applicata, 58:211220.Google Scholar
Smith, L. 1992. Effect of temperature on life history characteristics of Anisopteromalus calandrae (Hymenoptera: Pteromalidae) parasitizing maize weevil larvae in corn kernels. Environmental Entomology, 21:877887.Google Scholar
Smith, L. 1993. Effect of humidity on life history characteristics of Anisopteromalus calandrae (Hymenoptera: Pteromalidae) parasitizing maize weevil (Coleoptera: Curculionidae) larvae in shelled corn. Environmental Entomology, 22: 618624.Google Scholar
Smith, J.C., and Newsom, L.D. 1970. The biology of Amblyseius fallacis (Acarina: Phytoseiidae) at various temperature and photoperiod regimes. Annals of the Entomological Society of America, 63:460462.Google Scholar
Smith, L., and Rutz, D.A. 1986. Development rate and survivorship of immature Urolepis rufipes (Hymenoptera: Pteromalidae), a parasitoid of pupal house flies. Environmental Entomology, 15: 13011306.Google Scholar
Smith, R.F., and Hardman, J.M. 1986. Rates of feeding, oviposition, development, and survival of Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) on several weeds. The Canadian Entomologist, 118: 753759.Google Scholar
Smith, S.M., and Hubbes, M. 1986. Isoenzyme patterns and biology of Trichogramma minutum as influenced by rearing temperature and host. Entomologia Experimentalis et Applicata, 42: 249258.Google Scholar
Smith, J.W. Jr., Rodriguez-Del-Bosque, L.A., and Agnew, C.W. 1990. Biology of Mallochia pyralidis (Hymenoptera: Ichneumonidae), an ectoparasite of Eoreuma loftini (Lepidoptera: Pyralidae) from Mexico. Annals of the Entomological Society of America, 83: 961966.Google Scholar
Solbreck, C., Anderson, D.B., and Förare, J. 1990. Migration and coordination of life-cycles as exemplified by Lygaeine bugs. In Insect life cycles: genetics, evolution and co-ordination. Edited by Gilbert, F.. Springer-Verlag, London. pp. 197214.Google Scholar
Soliman, Z.R., Zaher, M.A., and Mohamed, M.I. 1978. Biology and predaceous efficiency of Macrocheles matrius (Hull) (Acari, Mesostigmata). Zeitschrift für Angewandte Entomologie, 85: 225230.Google Scholar
Stathas, G.J., Eliopoulos, P.A., Kontodimas, D.C., and Giannopapas, J. 2001. Parameters of reproductive activity in females of Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 98: 547549.Google Scholar
Stavraki, H.G. 1976. Effects of diet and temperature on development, fecundity and longevity of a Trichogramma sp., parasite of olive moth. Zeitschrift für Angewandte Entomologie, 81: 381386.Google Scholar
Steiner, M.Y., Goodwin, S., Wellham, T.M., Barchia, I.M., and Spohr, L.J. 2003 a. Biological studies of the Australian predatory mite Typhlodromips montdorensis (Schicha) (Acari: Phytoseiidae), a potential biocontrol agent for western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Australian Journal of Entomology, 42: 124130.Google Scholar
Steiner, M.Y., Goodwin, S., Wellham, T.M., Barchia, I.M., and Spohr, L.J. 2003 b. Biological studies of the Australian predatory mite Typhlodromalus lailae (Schicha) (Acari: Phytoseiidae). Australian Journal of Entomology, 42: 131137.Google Scholar
Steinkraus, D.C., and Cross, E.A. 1993. Description and life history of Acarophenax mahunkai, n.sp. (Acari, Tarsonemina: Acarophenacidae), an egg parasite of the lesser mealworm (Coleoptera: Tenebrionidae). Annals of the Entomological Society of America, 86: 239249.Google Scholar
Strixino, S.T., and Strixino, G. 1982. Ciclo de vida de Chironomus sancticaroli (Diptera: Chironomidae). Revista Brasileira de Entomologia, 26: 183189.Google Scholar
Summers, C.G., Coviello, R.L., and Gutierrez, A.P. 1984. Influence of constant temperatures on the development and reproduction of Acyrthosiphon kondoi (Homoptera: Aphididae). Environmental Entomology, 13: 236242.Google Scholar
Sumner, L.C., Dorschner, K.W., Ryan, J.D., Eikenbary, R.D., Johnson, R.C., and McNew, R.W. 1986. Reproduction of Schizaphis graminum (Homoptera: Aphididae) on resistant and susceptible wheat genotypes during simulated drought stress induced with polyethylene glycol. Environmental Entomology, 15: 756762.Google Scholar
Sunose, T. 1985. Population regulation of the euonymus gall midge Masakimyia pustulae Yukawa and Sunose (Diptera: Cecidomyiidae) by hymenopterous parasitoids. Researches on Population Ecology, 27: 287300.Google Scholar
Syrjämäki, J. 1965. Laboratory studies on the swarming behaviour of Chironomus strenzkei Fittkau in litt. (Dipt., Chironomidae). Annales Zoologici Fennici, 2: 145152.Google Scholar
Takada, Y., Kawamura, S., and Tanaka, T. 2000. Biological characteristics: growth and development of the egg parasitoid Trichogramma dendrolimi (Hymenoptera: Trichogrammatidae) on the cabbage armyworm Mamestra brassicae (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 35: 369379.Google Scholar
Takafuji, A., and Chant, D.A. 1976. Comparative studies of two species of predacious phytoseiid mites (Acarina: Phytoseiidae), with special reference to their responses to the density of their prey. Researches on Population Ecology, 17: 255310.Google Scholar
Takagi, M., and Murakami, K. 1997. Effect of temperature on development of Paratelenomus saccharalis (Hymenoptera: Scelionidae), an egg parasitoid of Megacopta punctatissimum (Hemiptera: Plataspidae). Applied Entomology and Zoology, 32: 659660.Google Scholar
Takahashi, F., and Chant, D.A. 1992. Adaptive strategies in the genus Phytoseiulus Evans (Acari: Phytoseiidae): I. Developmental times. International Journal of Acarology, 18: 171176.Google Scholar
Tamaki, G., Annis, B., Fox, L., Gupta, R.K., and Meszleny, A. 1982. Comparison of yellow holocyclic and green anholocyclic strains of Myzus persicae (Sulzer): low temperature adaptability. Environmental Entomology, 11: 231233.Google Scholar
Tamaki, G., Gefre, J.A., and Halfhill, J.E. 1983. Biology of morphs of Brachycolus asparagi Mordvilko (Homoptera: Aphididae). Environmental Entomology, 12: 11201124.Google Scholar
Tan, F.M., and Ward, C.R. 1977. Laboratory studies on the biology of the Banks grass mite. Annals of the Entomological Society of America, 70: 534536.Google Scholar
Tang, Y.Q., Lapointe, S., Brown, L.G., and Hunter, W.B. 1999. Effects of host plant and temperature on the biology of Toxoptera citricida (Homoptera: Aphididae). Environmental Entomology, 28: 895900.Google Scholar
Tanigoshi, L.K., and Browne, R.W. 1978. Influence of temperature on life table parameters of Metaseiulus occidentalis and Tetranychus mcdanieli (Acarina: Phytoseiidae, Tetranychidae). Annals of the Entomological Society of America, 71: 313316.Google Scholar
Tanigoshi, L.K., Hoyt, S.C., Browne, R.W., and Logan, J.A. 1975 a. Influence of temperature on population increase of Tetranychus mcdanieli (Acarina: Tetranychidae). Annals of the Entomological Society of America, 68: 972978.Google Scholar
Tanigoshi, L.K., Hoyt, S.C., Browne, R.W., and Logan, J.A. 1975 b. Influence of temperature on population increase of Metaseiulus occidentalis (Acarina: Phytoseiidae). Annals of the Entomological Society of America, 68: 979986.Google Scholar
Tanigoshi, L.K., Fargerlund, J., and Nishio-Wong, J.Y. 1981. Significance of temperature and food resources to the developmental biology of Amblyseius hibisci (Chant) (Acarina, Phytoseiidae). Zeitschrift für Angewandte Entomologie, 92: 409419.Google Scholar
Tanigoshi, L.K., Nishio-Wong, J.Y., and Fargerlund, J. 1983. Greenhouse- and laboratory-rearing studies of Euseius hibisci (Chant) (Acarina: Phytoseiidae), a natural enemy of the citrus thrips, Scirtothrips citri (Moulton) (Thysanoptera: Thripidae). Environmental Entomology, 12: 12981302.Google Scholar
Tatara, A. 1994. Effect of temperature and host plant on the development, fertility and longevity of Scirtothrips dorsalis Hood (Thysanoptera: Thripidae). Applied Entomology and Zoology, 29: 3137.Google Scholar
Teulon, D.A.J., and Penman, D.R. 1991. Effects of temperature and diet on oviposition rate and development time of the New Zealand flower thrips, Thrips obscuratus. Entomologia Experimentalis et Applicata, 60: 143155.Google Scholar
Thongtab, T., Chandrapatya, A., and Baker, G.T. 2001. Biology and efficacy of the predatory mite, Amblyseius longispinosus (Evans) (Acari, Phytoseiidae) as a biological control agent of Eotetranychus cendanai Rimando (Acari, Tetranychidae). Entomologia Experimentalis et Applicata, 125: 543549.Google Scholar
Timms, S., Ferro, D.N., and Emberson, R.M. 1981. General biology and nomenclature of Sancassania berlesei (Michael). Acarologia, 22: 385390.Google Scholar
Tiwari, N.K. 1974. Eurytoma nesiotes Crawford (Hym.: Chalcidoidea) an external parasite of gall midge Asphondylia sesami Felt. Zeitschrift für Angewandte Entomologie, 77: 189194.Google Scholar
Toyoshima, S., and Amano, H. 1999. Comparison of development and reproduction in offspring produced by females of Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae) under two prey conditions. Applied Entomology and Zoology, 34: 285292.Google Scholar
Tsai, J.H., and Wang, K. 1999. Life table study of brown citrus aphid (Homoptera: Aphididae) at different temperatures. Environmental Entomology, 28: 412419.Google Scholar
Tsai, J.H., Yue, B., Webb, S.E., Funderburk, J.E., and Hsu, H.T. 1995. Effects of host plant and temperature on growth and reproduction of Thrips palmi (Thysanoptera: Thripidae). Environmental Entomology, 24: 15981603.Google Scholar
Tsitsipis, J.A., and Mittler, T.E. 1976. Development, growth, reproduction, and survival of apterous virginoparae of Apis fabae at different temperatures. Entomologia Experimentalis et Applicata, 19: 110.Google Scholar
Tsueda, H., and Tsuchida, K. 1998. Differences in spatial distribution and life history parameters of two sympatric whiteflies, the greenhouse whitefly (Trialeurodes vaporariorum Westwood) and the silverleaf whitefly (Bemisi argentifolii Bellows & Perring), under greenhouse and laboratory conditions. Applied Entomology and Zoology, 33: 379383.Google Scholar
Tyler, B.M.J., and Jones, P.A. 1974. Influence of low temperature on development and successful emergence of Lysiphlebus testaceipes, a parasite of the greenbug. Environmental Entomology, 3: 377379.Google Scholar
Uematsu, H. 1981 a. Bionomics of Euplectrus kuwanae Crawford (Hymenoptera: Eulophidae), a parasitoid of Argyrogramma albostriata (Bremer et Grey). Applied Entomology and Zoology, 16: 5759.Google Scholar
Uematsu, H. 1981 b. The ovipositional behavior in Euplectrus kuwanae Crawford (Hymenoptera: Eulophidae), a parasitoid of Argyrogramma albostriata (Bremer et Grey) (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 16: 443450.Google Scholar
Uichanco, L.B. 1924. Studies on the embryology and post-natal development of the Aphididae with special reference to the history of the ‘symbiotic organ’ or ‘mycetom’. Phillipine Journal of Science, 24: 143247.Google Scholar
Ulrich, H., Petalas, A., and Camenzind, R. 1972. Der Generationswechsel von Mycophila speyeri Barnes, einer Gallmücke mit paedogenetischer Fortpflanzung. Revue Suisse de Zoologie, 79(Suppl.): 7583.Google Scholar
Umeh, E.D.N. 1988. Development, oviposition, host feeding and sex determination in Epidinocarsis lopezi (De Santis) (Hymenoptera: Encyrtidae). Bulletin of Entomological Research, 78: 605611.Google Scholar
Urbaneja, A., Llácer, E., Tomás, O., Jacas, J., and Garrido, A. 1999. Effect of temperature on development and survival of Cirrospilus sp. near lyncus (Hymenoptera: Eulophidae), parasitoid of the citrus leafminer (Lepidoptera: Gracillariidae). Environmental Entomology, 28: 339344.Google Scholar
Urbaneja, A., Llácer, E., Garrido, A., and Jacas, J. 2001. Effect of temperature on the life history of Cirrospilus sp. near lyncus (Hymenoptera: Eulophidae), a parasitoid of Phyllocnistis citrella (Lepidoptera: Gracillariidae). Biological Control, 21: 293299.Google Scholar
Urbaneja, A., Hinarejos, R., Llácer, E., Garrido, A., and Jacas, J. 2002. Effect of temperature on life history of Cirrospilus vittatus (Hymenoptera: Eulophidae), an ectoparasitoid of Phyllocnistis citrella (Lepidoptera: Gracillariidae). Journal of Economic Entomology, 95: 250255.Google Scholar
Utida, S. 1957. Developmental zero temperature in insects. Japanese Journal of Applied Entomology and Zoology, 1: 4653. [In Japanese.]Google Scholar
van Rijn, P.C.J., Mollema, C., and Steenhuis-Broers, G.M. 1995. Comparative life history studies of Frankliniella occidentalis and Thrips tabaci (Thysanoptera: Thripidae) on cucumber. Bulletin of Entomological Research, 85: 285297.Google Scholar
van Steenis, M.J. 1993. Intrinsic rate of increase of Aphidius colemani Vier. (Hym., Braconidae), a parasitoid of Aphis gossypii Glov. (Hom., Aphididae), at different temperatures. Journal of Applied Entomology, 116: 192198.Google Scholar
van Steenis, M.J. 1995. Evaluation of four aphidiine parasitoids for biological control of Aphis gossypii. Entomologia Experimentalis et Applicata, 75: 151157.Google Scholar
Vanninen, I. 2001. Biology of the shore fly Scatella stagnalis in rockwool under greenhouse conditions. Entomologia Experimentalis et Applicata, 98: 317328.Google Scholar
Vaught, G.L., and Stewart, K.W. 1974. The life history and ecology of the stonefly Neoperla clymene (Newman) (Plecoptera: Perlidae). Annals of the Entomological Society of America, 67: 167178.Google Scholar
Villanueva, B.J.R., and Strong, F.E. 1964. Laboratory studies on the biology of Rhopalosiphum padi (Homoptera: Aphidae). Annals of the Entomological Society of America, 57: 609613.Google Scholar
Vogt, W.G., Walker, J.M., and Runko, S. 1990. Estimation of development times for immature stages of the bush fly, Musca vetustissima Walker (Diptera: Muscidae), and their simulation from air temperature and solar radiation records. Bulletin of Entomological Research, 80: 7378.Google Scholar
Wade, C.F., and Rodriguez, J.G. 1961. Life history of Macrocheles muscaedomesticae (Acarina: Macrochelidae), a predator of the house fly. Annals of the Entomological Society of America, 54: 776781.Google Scholar
Walter, D.E., and Ikonen, E.K. 1989. Species, guilds, and functional groups: taxonomy and behavior in nematophagous arthropods. Journal of Nematology, 21: 315327.Google Scholar
Walter, D.E., and Proctor, H.C. 1999. Mites: ecology, evolution and behaviour. University of New South Wales Press, Sydney, Australia and CABI, Wallingford, United Kingdom.Google Scholar
Wang, J.-J., and Tsai, J.H. 2000. Effect of temperature on the biology of Aphis spiraecola (Homoptera: Aphididae). Annals of the Entomological Society of America, 93: 874883.Google Scholar
Wang, J.-J., and Tsai, J.H. 2001. Development, survival and reproduction of black citrus aphid, Toxoptera aurantii (Hemiptera: Aphididae), as a function of temperature. Bulletin of Entomological Research, 91: 477487.Google Scholar
Wang, K., Tsai, J.H., and Harrison, N.A. 1997. Influence of temperature on development, survivorship, and reproduction of buckthorn aphid (Homoptera: Aphididae). Annals of the Entomological Society of America, 90: 6268.Google Scholar
Wcislo, W.T. 1987. The roles of seasonality, host synchrony, and behavior in the evolutions and distributions of nest parasites in Hymenoptera (Insecta), with special reference to bees (Apoidea). Biological Reviews and Biological Proceedings of the Cambridge Philosophical Society, 62: 515543.Google Scholar
Wellings, P.W. 1981. The effect of temperature on the growth and reproduction of two closely related aphid species. Ecological Entomology, 6: 209214.Google Scholar
Wellings, P.W. 1985. Growth, development and survival of Acyrthosiphon kondoi (Homoptera: Aphididae) on five cultivars of lucerne. Journal of the Australian Entomological Society, 24: 155160.Google Scholar
Weseloh, R.M. 1984. Effect of size, stress, and ligation of gypsy moth (Lepidoptera: Lymantriidae) larvae on development of the tachinid parasite Compsilura concinnata Meigen (Diptera: Tachinidae). Annals of the Entomological Society of America, 77: 423428.Google Scholar
White, N.D., and Laing, J.E. 1977. Some aspects of the biology and a laboratory life table of the acarine predator Zetzellia mali. The Canadian Entomologist, 109: 12751281.Google Scholar
White, N.D.G., and Sinha, R.N. 1981. Life history and population dynamics of the mycophagous mite Tarsonemus granarius Lindquist (Acarina: Tarsonemidae). Acarologia, 22: 353360.Google Scholar
Whitfield, G.H., and Richards, K.W. 1985. Influence of temperature on survival and rate of development of Pteromalus venustus (Hymenoptera: Pteromalidae), a parasite of the alfalfa leafcutter bee (Hymenoptera: Megachilidae). The Canadian Entomologist, 117: 811818.Google Scholar
Wohltmann, A. 2000. The evolution of life histories in Parasitengona (Acari: Prostigmata). Acarologia, 41: 145204.Google Scholar
Wood, D.M., Dang, P.T., and Ellis, R.A. 1979. The mosquitoes of Canada (Diptera: Culicidae). The insects and arachnids of Canada, Part 6. Agriculture Canada Publication 1686.Google Scholar
Woodring, J.P. 1969. Observations on the biology of six species of acarid mites. Annals of the Entomological Society of America, 62: 102108.Google Scholar
Woodring, J.P., and Cook, E.F. 1962. The biology of Ceratozetes cisalpinus Berlese, Scheloribates laevigatus Koch, and Oppia neerlandica Oudemans (Oribatei), with a description of all stages. Acarologia, 4: 101137.Google Scholar
Wrensch, D.L., and Bruce, W.A. 1991. Sex-ratio, fitness and capacity for population increase in Pyemotes tritici (L.-F. & M.) (Pyemotidae). In The Acari. Reproduction, development and life-history strategies. Edited by Schuster, R. and Murphy, P.W.. Chapman and Hall, London. pp. 209221.Google Scholar
Wright, L.C., and Cone, W.W. 1988. Population statistics for the asparagus aphid, Brachycorynella asparagi (Homoptera: Aphididae), on different ages of asparagus foliage. Environmental Entomology, 17: 699703.Google Scholar
Wyatt, I.J. 1963. Pupal paedogenesis in the Cecidomyiidae (Diptera) — II. Proceedings of the Royal Entomological Society of London A, 38: 136144.Google Scholar
Wyatt, I.J. 1964. Immature stages of Lestremiinae (Diptera: Cecidomyiidae) infesting cultivated mushrooms. Transactions of the Royal Entomological Society of London, 116: 1527.Google Scholar
Wyatt, I.J. 1967. Pupal paedogenesis in the Cecidomyiidae (Diptera) 3 – A reclassification of the Heteropezini. Transactions of the Royal Entomological Society of London, 119: 7198.Google Scholar
Xia, J.Y., van der Werf, W., and Rabbinge, R. 1999. Influence of temperature on bionomics of cotton aphid, Aphis gossypii, on cotton. Entomologia Experimentalis et Applicata, 90: 2535.Google Scholar
Yang, Y., and Joern, A. 1994. Compensatory feeding in response to variable food quality by Melanoplus differentialis. Physiological Entomology, 19: 7582.Google Scholar
Ydergaard, S., Enkegaard, A., and BrØdsgaard, H.F. 1997. The predatory mite Hypoaspis miles: tem perature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici. Entomologia Experimentalis et Applicata, 85: 177187.Google Scholar
Yeargan, K.V. 1980. Effects of temperature on developmental rate of Telenomus podisi (Hymenoptera: Scelionidae). Annals of the Entomological Society of America, 73: 339342.Google Scholar
Yeargan, K.V. 1982. Reproductive capability and longevity of the parasitic wasps Telenomus podisi and Trissolcus euschisti. Annals of the Entomological Society of America, 75: 181183.Google Scholar
Yeargan, K.V. 1983. Effects of temperature on developmental rate of Trissolcus euschisti (Hymenoptera: Scelionidae), a parasite of stink bug eggs. Annals of the Entomological Society of America, 76: 757760.Google Scholar
Yousef, A.A. 1981. Morphology and biology of Typhlodromus africanus n. sp. (Acarina: Mesostigmata: Phytoseiidae). Acarologia, 22: 121125.Google Scholar
Yousef, A.A., El-Badry, E.A., and Metwally, S.H. 1979. Life history of the anoetid mite Histiosoma cataglyphi Yousef et Metwally, with a description of the immature stages (Acari, Astigmata, Anoetoidea). Zeitschrift für Angewandte Entomologie, 87: 225229.Google Scholar
Yousef, A.A., Zaher, M.A., and Kandil, M.M. 1982 a. Effect of prey and temperature on the development and biology of Cheyletus malaccensis Oudemans (Acari, Cheyletidae). Zeitschrift für Angewandte Entomologie, 93: 3942.Google Scholar
Yousef, A.A., Zaher, M.A., and Abd El-Hafiez, A.M. 1982 b. Effect of prey on the biology of Amblyseius gossipi Elbadry and Agistemus exsertus Gonzalez (Acari, Phytoseiidae, Stigmeidae). Zeitschrift für Angewandte Entomologie, 93: 453456.Google Scholar
Yu, D.S.K., Hagley, E.A.C., and Laing, J.E. 1984. Biology of Trichogramma minutum Riley collected from apples on southern Ontario. Environmental Entomology, 13: 13241329.Google Scholar
Yue, B., and Tsai, J.H. 1996. Development, survivorship, and reproduction of Amblyseius largoensis (Acari: Phytoseiidae) on selected plant pollens and temperatures. Environmental Entomology, 25: 488494.Google Scholar
Zaher, M.A., Wafa, A.K., and Shehata, K.K. 1969. Life history of the predatory mite Phytoseius plumifer and the effect of nutrition on its biology (Acarina: Phytoseiidae). Entomologia Experimentalis et Applicata, 12: 383388.Google Scholar
Zaher, M.A., Afify, A.M., and Gomaa, E.A. 1971. Survey and biology of Agistemus exsertus Gonzalez in U.A.R., with description of the immature stages (Stigmaeidae: Acarina). Zeitschrift für Angewandte Entomologie, 67: 272279.Google Scholar