Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-11T17:13:47.887Z Has data issue: false hasContentIssue false

SIMULATED MANAGEMENT OF AN HISTORICAL SPRUCE BUDWORM POPULATION USING INUNDATIVE PARASITE RELEASE

Published online by Cambridge University Press:  31 May 2012

M. You
Affiliation:
Faculty of Forestry, 33 Willcocks Street, University of Toronto, Toronto, Ontario, Canada M5S 3B3
S.M. Smith
Affiliation:
Faculty of Forestry, 33 Willcocks Street, University of Toronto, Toronto, Ontario, Canada M5S 3B3

Abstract

Summary life table data of historical spruce budworm, Choristoneura fumiferana (Clemens), populations from the Green River Project in New Brunswick, Canada (1947–1958), provided information for developing a management strategy using annual inundative releases of the egg parasite Trichogramma minutum Riley. Three threshold levels (39, 169, and 201 budworm egg masses per 10 m2 foliage) were assigned to the spruce budworm population and a simulation model employed to manage it at or below each level. Based on field data, the lowest threshold represented a light level of defoliation while the other two thresholds represented moderate defoliation levels. With the exception of 3 years at the low level, annual inundative releases of T. minutum successfully suppressed the spruce budworm population below the three thresholds in the model. Annual releases of T. minutum were also simulated during the inclining, plateau, and declining phases of one outbreak cycle of the spruce budworm. At the same rate (12 × 106 female T. minutum per hectare), inundative releases during the inclining phase were more effective than during either the plateau or declining phases. The results suggest that some low and moderate populations of spruce budworm can be effectively managed using annual inundative releases of an egg parasite, particularly toward the end of the inclining phase of an outbreak, but when populations reach severe levels, additional mortality agents probably will have to be considered in an integrated approach.

Résumé

Les données en résumé d’un tableau vital des populations historiques de la tordeuse de l’épinette, Choristoneura fumiferana (Clemens), de l’Opération de Green River, Nouveau-Brunswick, Canada (1947 à 1958), ont fourni les renseignements nécessaires pour développer une stratégie de gestion en utilisant les afflux du parasite des oeufs, Trichogramma minutum Riley. Trois paliers (39, 169 et 201 masses d’oeufs de la tordeuse par 10 m2 de feuillage) ont été attribués à la population de la tordeuse de l’épinette et un modèle simulé a été utilisé pour la gérer au niveau ou au-dessous de chaque palier. Selon les données des champs, le palier le plus bas a représenté un niveau de défoliation légère, pendant que les deux autres paliers ont représenté les niveaux de défoliation modérée. Sauf pendant 3 ans au niveau bas, les afflux de T. minutum ont réussi à supprimer la population de la tordeuse de l’épinette au-dessous des trois paliers du modèle. Les relâchements annuels de T. minutum ont été simulés également pendant les phases d’augmentation, de plateau et de déclin d’un cycle d’une épidémie de la tordeuse. Au même taux (12 × 106 femelles de T. minutum par hectare), les afflux pendant le phase d’augmentation ont été plus efficaces que celui de plateau ou de déclin. Les résultats suggèrent que quelques populations de grandeur légère et modérée pourraient être gérées efficacement en utilisant des afflux d’un parasite d’oeufs, surtout vers la fin d’une phase d’augmentation d’une épidémie. Cependant, quand les populations sont d’un niveau sévère, la considération d’autres agents nocifs serait probablement nécessaire pour une gestion intégrée.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Visiting Scientist from the Department of Plant Protection, Fujian Agricultural College, the People's Republic of China.

References

Baskerville, G.L. 1982. The spruce/fir wood supply in New Brunswick. For. Manage. Br., New Brunswick Dept. Nat. Res., Fredericton, N.B. Rep. No. 0-88838-408-4.Google Scholar
Cameron, D.G., McDougall, G.A., and Bennett, C.W.. 1968. Relation of spruce budworm development and balsam fir shoot growth to heat units. J. econ. Ent. 61: 857858.10.1093/jee/61.3.857CrossRefGoogle Scholar
Clark, W.C., Jones, D.D., and Holling, C.S.. 1979. Lessons for ecological policy design: a case study of ecosystem management. Ecol. Model. 7: 153.CrossRefGoogle Scholar
Dorais, F., and Kettela, E.G.. 1982. A review of entomological survey and assessment techniques used in regional spruce budworm, Choristoneura fumiferana (Clems.) surveys and in the assessment of operational spray programs: A Report of the Committee for the Standardation of Survey and Assessment Techniques, Eastern Spruce Budworm Council. 43 pp.Google Scholar
Fleming, R.A. 1985. How should one view the historical record of spruce budworm outbreaks? pp. 136–138 in Sanders, C.J., Stark, R.W., Mullins, E.J., and Murphy, J. (Eds.), Recent Advances in Spruce Budworms Research. Proc. CANUSA Spruce Budworms Symp., 16–20 Sept. 1984, Bangor, ME. Can. For. Serv., Ottawa, Ontario. 527 pp.Google Scholar
Holling, C.S. (Ed.). 1978. Adaptive Environmental Assessment and Management. John Wiley and Sons, London, UK. 377 pp.Google Scholar
MacDonald, D.R. 1963. The analysis of egg survival in the sprayed area. pp. 133–137 in Morris, R.F. (Ed.), The Dynamics of Epidemic Spruce Budworm Populations. Mem. ent. Soc. Can. 31. 1332 pp.Google Scholar
Morris, R.F. (Ed.) 1963. The dynamics of epidemic spruce budworm populations. Mem. ent. Soc. Can. 31. 1332 pp.Google Scholar
Régnière, J. 1987. Temperature-dependence of eggs and larvae of Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its seasonal history. Can. Ent. 119: 717728.CrossRefGoogle Scholar
Royama, T. 1981. Fundamental concepts and methodology for the analysis of animal population dynamics, with particular reference to univoltine species. Ecol. Monogr. 51: 473491.CrossRefGoogle Scholar
Royama, T. 1984. Population dynamics of the spruce budworm, Choristoneura fumiferana. Ecol. Monogr. 54: 429462.CrossRefGoogle Scholar
Smith, S.M., Hubbes, M., and Carrow, J.R.. 1986.Factors affecting inundative releases of Trichogramma minutum Ril. against the spruce budworm. J. appl. Ent. 101: 2939.10.1111/j.1439-0418.1986.tb00830.xCrossRefGoogle Scholar
Smith, S.M., Wallace, D.R., Howse, G., and Meating, J.. 1990. Suppression of spruce budworm populations by Trichogramma minutum Riley, 1982–1986. pp. 56–81 in Smith, S.M., Carrow, J.R., and Laing, J.E. (Eds.), Inundative Release of the Egg Parasitoid, Trichogramma minutum (Hymenoptera: Trichogrammatidae), against Forest Insect Pests such as the Spruce Budworm, Choristoneura fumiferana (Lepidoptera: Tortricidae): The Ontario Project 1982–1986. Mem. ent. Soc. Can. 153. 87 pp.Google Scholar
Smith, S.M., and You, M.. 1990. A life system simulation model for improving inundative releases of the egg parasite, Trichogramma minutum (Hymenoptera: Trichogrammatidae) against the spruce budworm (Lepidoptera: Tortricidae). Ecol. Model. 51: 123142.CrossRefGoogle Scholar
Stedinger, J. 1984. A spruce budworm forest model and its implications for suppression programs. Forest Sci. 30(3): 597615.Google Scholar