Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-13T16:19:29.266Z Has data issue: false hasContentIssue false

Synergisitic effect of chitinases and Bacillus thuringiensis israelensis spore-toxin complex against Aedes aegypti larvae

Published online by Cambridge University Press:  03 January 2012

Montserrat Ramírez-Suero
Affiliation:
Unidad de Investigación y Desarrollo en Alimentos-Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz, Veracruz 91897, México
Gerardo Valerio-Alfaro
Affiliation:
Unidad de Investigación y Desarrollo en Alimentos-Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz, Veracruz 91897, México
Julio S. Bernal
Affiliation:
Biological Control Laboratory, Department of Entomology, Texas A&M University, College Station, Texas 77843-2475, United States of America
Mario Ramírez-Lepe*
Affiliation:
Unidad de Investigación y Desarrollo en Alimentos-Instituto Tecnológico de Veracruz, M.A. de Quevedo 2779, Veracruz, Veracruz 91897, México
*
1Corresponding author (e-mail: mario.ramirez.lepe@gmail.com).

Abstract

Six subspecies of Bacillus thuringiensis Berliner (Bt) were grown in minimal medium with chitin as the sole carbon source for 6 days to obtain Bt cell-free fermented broths, which were then evaluated for chitinolytic activity and tested against third-instar Aedes aegypti (L.) (Diptera: Culicidae) larvae. Bt pakistani showed the highest chitinolytic activity (approximately >2700 mU/mL), Bt kurstaki showed the lowest activity (approximately <2000 mU/mL), and Bt thompsoni, Bt aizawai, Bt israelensis, and Bt alesti showed intermediate activities (approximately 2100–2400 mU/mL). Bt aizawai and Bt thompsoni broths showed the highest toxicity (LC50) against third-instar A. aegypti larvae (approximately <290 mU/mL). Bt kurstaki broth showed the lowest toxicity (approximately 420 mU/mL), while Bt pakistani, Bt israelensis, and Bt alesti broths showed intermediate toxicities (approximately 360–460 mU/mL). A purified and biochemically characterized Bt aizawai chitinase and commercial chitinases (from Serratia marcescens Bizio and Streptomyces griseus Waksman and Henrici) were evaluated and compared for synergistic effects on Bt israelensis spore-toxin complex against third-instar A. aegypti larvae. The synergism factor value of Streptomyces griseus and Bt aizawai chitinases were >2 and approximately 1.4; synergism was not evident for the Serratia marcescens chitinase (synergism factor value approximately 0.9).

Résumé

Six sous-espèces de Bacillus thuringiensis Berliner (Bt) ont été cultivées en milieu minimal avec la chitine comme seule source de carbone pendant 6 jours afin d’obtenir un surnageant sans cellules Bt. L’activité chitinolytique et la toxicité sur le troisième stade larvaire d’Aedes aegypti (L) (Diptera : Culicidae) de ce surnageant ont été mesurés. Des six sous-espèces testées, Bt pakistani a montré l’activité chitinolytique la plus élevée (> approximativement 2700 mU/mL), alors que Bt kurstaki a montré l’activité chitinolytique la plus faible (< approximativement 2000 mU/mL), et Bt thompsoni, Bt aizawai, Bt israelensis et Bt alesti ont montré des activités intermédiaires (approximativement 2100–2400 mU/mL). Les surnageants de Bt aizawai et Bt thompsoni ont montré la toxicité plus élevée (LC50) pour le troisième stade larvaire d’A. aegypti (< approximativement 290 mU/mL), alors que Bt kurstaki possédait la toxicité la plus faible (approximativement 420 mU/mL) et que Bt pakistani, Bt israelensis, et Bt alesti avaient des toxicités intermédiaires (approximativement 360–460 mU/mL). Une chitinase purifiée et biochimiquement caractérisée, Bt aizawai et des chitinases commerciales (provenant de Serratia marcescens Bizio et Streptomyces griseus Waksman and Henrici) ont été évaluées et les effets synergiques mesurés sur le complexe de spores et toxines Bt israelensis contre le troisième stade larvaire d’A. aegypti. La valeur du facteur de synergie des chitinases de Streptomyces griseus et Bt aizawai étaient de > 2 et approximativement 1,4 respectivement, et aucune synergie n’a été mise en évidence pour la chitinase de Serratia marcescens (approximativement 0,9).

Type
Articles
Copyright
Copyright © Entomological Society of Canada 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilar-Meza, O., Ramírez-Suero, M., Bernal, J.S., and Ramírez-Lepe, M. 2010. Field evaluation against Aedes aegypti larvae of aluminum-carboxymethylcellulose-encapsulated formulation of Bacillus thuringiensis serovar israelensis. Journal of Economic Entomology, 103: 570576. PMID:20568600 doi:10.1603/EC09372.CrossRefGoogle ScholarPubMed
Analytical Software. 2008. Statistix 9.0. Analytical Software. Talahassee, Florida.Google Scholar
Araújo, A.P., Melo-Santos, M.A.V., Carlos, S.O., Ríos, E.M.M.M., and Regis, L. 2007. Evaluation of an experimental product based on Bacillus thuringiensis serovar israelensis against Aedes aegypti larvae (Diptera: Culicidae). Biological Control, 41: 339347. doi:10.1016/j.biocontrol.2007.03.002.CrossRefGoogle Scholar
Arora, N., Ahmad, T., Rajagopal, R., and Bhatnagar, R.K. 2003. A constitutively expressed 36 kDa exochitinase from Bacillus thuringiensis HD-1. Biochemical and Biophysical Research Communications, 307: 620625. PMID:12893268 doi:10.1016/S0006-291X(03)01228-2.Google Scholar
Barboza-Corona, J.E., Contreras, J.C., Velásquez, R.R., Bautista, J.M., Gómez, R.M., Cruz, C.R., and Ibarra, J.E. 1999. Selection of chitinolytic strains of Bacillus thuringiensis. Biotechnology Letters, 21: 11251129. doi:10.1023/A:1005626208193.Google Scholar
Bhattacharya, D., Nagpure, A., and Gupta, R.K. 2007. Bacterial chitinases: properties and potential. Critical Reviews in Biotechnology, 27: 2128. PMID:17364687 doi:10.1080/07388550601168223.Google Scholar
Brurberg, M.B., Nes, I.F., and Eijsink, V.G.H. 1996. Comparative studies of chitinase A and B from Serratia marcescens. Microbiology, 142: 15811589. PMID:8757722 doi:10.1099/13500872-142-7-1581.Google Scholar
Castañeda-Agulló, M. 1956. Studies on the biosynthesis of extracellular proteases by bacteria. Journal of General Physiology, 89: 369373. doi:10.1085/jgp.39.3.369.Google Scholar
Chungjatupornchai, W., Höfte, H., Seurinck, J., Angsuthanasombat, C.H., and Vaeck, M. 1988. Common features of Bacillus thuringiensis toxins specific for Diptera and Lepidoptera. European Journal of Biochemistry, 173: 916. PMID:2833395 doi:10.1111/j.1432-1033.1988.tb13960.x.Google Scholar
Deshpande, V., and Reetarani, S. 2000. Chytinolytic enzymes: an exploration. Enzyme and Microbial Technology, 26: 473483. PMID:10771049doi:10.1016/S0141-0229(00)00134-4.Google Scholar
Frankenhuyzen, K., Gringorten, J.L., Milne, R.E., Gauthier, D., Pusztai, M., Brousseau, R., and Masson, L. 1991. Specificity of activated CryIA proteins from Bacillus thuringiensis subsp. kurstaki HD-1 for defoliating forest Lepidoptera. Applied and Environmental Microbiology, 57: 16501655. PMID:16348504.CrossRefGoogle ScholarPubMed
Gomez, R.M., Rojas-Avelizapa, L.I., Cruz Camarillo, R. 2001. The chitinase of Bacillus thuringiensis. In Chitin enzymology. Edited by R.A.A. Muzzarelli. Atec, Italy. pp. 273281.Google Scholar
Hoster, F., Schmitz, J.E., and Daniel, R. 2005. Enrichment of chitinolytic microorganisms: isolation and characterization of a chitinase exhibiting antifungal activity against phytopathogenic fungi from a novel Streptomyces strain. Applied and Microbiology Biotechnology, 66: 434442. PMID:15290142 doi:10.1007/s00253-004-1664-9.CrossRefGoogle ScholarPubMed
Huber, M., Cabib, E., and Miller, L.H. 1991. Malaria parasite chitinase and penetration of the mosquito peritrophic membrane. Proceedings of the National Academy of Sciences, 88: 28072810. PMID:2011589 doi:10.1073/pnas.88.7.2807.Google Scholar
Lacey, A.L. 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. Journal of the American Mosquito Control Association, 7: 133163. doi:10.2987/8756-971X(2007)23[133:BTSIAB]2.0.CO;2.Google Scholar
Laemmli, U.K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature (London), 227: 680685. PMID:5432063 doi:10.1038/227680a0.CrossRefGoogle ScholarPubMed
Liu, M., Cai, Q.X., Liu, H.Z., Zhang, B.H., Yan, J.P., and Yuan, Z.M. 2002. Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. Journal of Applied Microbiology, 93: 374379. PMID:12174034doi:10.1046/j.1365-2672.2002.01693.x.CrossRefGoogle ScholarPubMed
Lowry, O.H., Rosebrough, N.J., Farr, A.L., and Randall, R.J. 1951. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193: 265275. PMID:14907713.Google Scholar
McLaughlin, R.E., Dulmage, H.T., Alls, R.A., Couch, T.L., Dame, D.A., Hall, I.M. et al. , 1984. U.S. standard bioassay for the potency assessment of Bacillus thuringiensis var. israelensis serotype H-14 against mosquito larvae. Bulletin of the Entomological Society of America, 30: 2629.Google Scholar
Melo-Santos, M.A.V., Araujo, A.P., Rios, E.M.M., and Regis, L. 2009. Long lasting persistence of Bacillus thuringiensis serovar israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biological Control, 49: 186191. doi:10.1016/j.biocontrol.2009.01.011.CrossRefGoogle Scholar
Miller, G.L. 1959. Use of dinitrosalisylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31: 426428. doi:10.1021/ac60147a030.CrossRefGoogle Scholar
Morales de la Vega, L., Barboza-Corona, J.E., Aguilar-Uscanga, M.G., and Ramírez-Lepe, M. 2006. Purification and characterization of an exochitinase from Bacillus thuringiensis ssp. aizawai and its action against phytopathogenic fungi. Canadian Journal of Microbiology, 52: 651657. PMID:16917521 doi:10.1139/W06-019.Google Scholar
Ogunjimi, A.A., Chandler, J.J., Gbenle, G.O., Olukoya, D.K., and Akinrimisi, E.O. 2002. Heterologous expression of cry2 gene from a local strain of Bacillus thuringiensis isolated in Nigeria. Biotechnology and Applied Biochemistry, 36: 241246. PMID:12452809 doi:10.1042/BA20020053.Google Scholar
Panbangred, W., Sirichotpakorn, N., Rongenoparut, P., and Choosang, K. 2001. Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis. Journal of Invertebrate Pathology, 3: 160169.Google Scholar
Poncet, S., Delécluse, A., Klie, A., and Rapoport, G. 1995. Evaluation of synergistic interactions among the CryIVA, CryIVB, and CryIVD toxic components of B. thuringiensis subsp. israelensis crystals. Journal of Invertebrate Pathology, 66: 131135. doi:10.1006/jipa.1995.1075.Google Scholar
Quintana-Castro, R., Ramírez-Suero, M., MorenoSanz, F., and Ramírez-Lepe, M. 2005. Expression of the cryllA gene of Bacillus thuringiensis ssp. israelensis in Saccharomyces cerevisiae. Canadian Journal of Microbiolgy, 51: 165170. PMID:16091775 doi:10.1139/w04-126.Google Scholar
Ramírez-Suero, M., Robles-Olvera, V., and Ramírez-Lepe, M. 2005. Spray-dried Bacillus thuringiensis serovar israelensis formulations for control of Aedes aegypti larvae. Journal of Economic Entomology, 98: 14941498. PMID:16334315 doi:10.1603/0022-0493-98.5.1494.Google Scholar
Regev, A., Keller, M., Strizhov, N., Sneh, B., Prudovsky, E., Chet, I. et al. , 1996. Synergistic activity of a Bacillus thuringiensis δ-endotoxin and a bacterial endochitinase against Spodoptera littoralis. Applied and Environmental Microbiology, 62: 35813586. PMID:8837413.Google Scholar
Rudin, W., and Hecker, H. 1989. Lectin-binding sites in the midgut of the mosquitoes Anopheles stephensi Liston and Aedes aegypti L. (Diptera: Culicidae). Parasitology Research, 75: 268279. PMID:2649879 doi:10.1007/BF00931811.CrossRefGoogle ScholarPubMed
Ruiz-Sánchez, A., Cruz-Camarillo, R., Salcedo-Hernández, R., and Barboza-Corona, J.E. 2005. Chitinase from Serratia marcescens Nima. Biotechnology Letters, 25: 649653. doi:10.1007/s10529-005-3661-1.Google Scholar
Sandhya, C., Adapa, L.K., Nampoothiri, K.M., Binod, P., Szakacs, G., and Pandey, A. 2004. Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. Journal of Basic Microbiology, 44: 4958. PMID:14768028 doi:10.1002/jobm.200310284.Google Scholar
Smirnoff, W.A. 1973. Results of tests with Bacillus thuringiensis and chitinase on larvae of the spruce budworm. Journal of Invertebrate Pathology, 21: 116118. doi:10.1016/0022-2011(73)90122-5.Google Scholar
Tabashnik, B.E. 1992. Evaluation of synergism among Bacillus thuringiensis toxins. Applied and Environmental Microbiology, 58: 33433346. PMID:1444368.Google Scholar
Vu, K.D., Yan, S., Tyagi, R.D., Valéro, J.R., and Surampalli, R.Y. 2009. Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate. Bioresource Technology, 100: 52605269. PMID:19564105 doi:10.1016/j.biortech.2009.03.084.CrossRefGoogle ScholarPubMed
Wirth, M.C., Delécluse, A., and Walton, W.E. 2004. Laboratory selection for resistance to Bacillus thuringiensis subsp. jegathesan or a component toxin, Cry11B, in Culex quinquefasciatus (Diptera:Culicidae). Journal of Medical Entomology, 41: 435441. PMID:15185947 doi: 10.1603/0022-2585-41.3.435.Google Scholar
Wiwat, C., Thaithanun, S., Pantuwatana, S., and Bhumiratana, A. 2000. Toxicity of chitinase-producing Bacillus thuringiensis sp. kurstaki HD-1 toward Plutella xylostella. Journal of Invertebrate Pathology, 76: 270277. PMID:11112372doi:10.1006/jipa.2000.4976.Google Scholar
Wu, D., Johnson, J.J., and Federici, B.A. 1994. Synergism of mosquitocidal toxicity between CytA and CrylVD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Molecular Microbiology, 13: 965972. PMID:7854129doi:10.1111/j.1365-2958.1994.tb00488.x.Google Scholar
Zar, J.H. 1996. Biostatistical analysis. Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar