Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-09T00:36:30.073Z Has data issue: false hasContentIssue false

Compactness of the Fluctuations Associated with some Generalized Nonlinear Boltzmann Equations

Published online by Cambridge University Press:  20 November 2018

René Ferland
Affiliation:
Université du Québec à Montréal, Montréal, Québec
Xavier Fernique
Affiliation:
Université Louis Pasteur, Strasbourg, France
Gaston Giroux
Affiliation:
Université de Sherbrooke, Sherbrooke, Québec
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we develop a new approach to obtain the compactness of the fluctuation processes for Boltzmann dynamics. Our method is applicable to Kac's model, already studied by Uchiyama, but it covers many other cases. A novelty worth mentioning is the use of the weak topology of a Hilbert space.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

1. Barnsley, M.F. and Turchetti, G., A Study of Boltzmann Energy Equations, Ann. Phys. 159(1985), 161.Google Scholar
2. Barrachina, R.O., Wild's Solution of the Nonlinear Boltzmann Equation, J. Statist. Phys. 52( 1988), 357368.Google Scholar
3. Billingsley, P., Convergence of Probability Measures, Wiley, New York, 1968.Google Scholar
4. Bojdeckiand, T. Gorostiza, L.G., Langevin equationsfor S’ -valued gaussian processes andfluctuation limits of infinite particle systems, Probab. Th. Rel. Fields 73(1986), 227244.Google Scholar
5. Dawson, D.A., Critical dynamics and fluctuations for a mean field model of cooperative behaviour, J. Statist. Phys. 31(1983), 2985.Google Scholar
6. Ethier, S.N. and Kurtz, T.G., Markov Processes. Characterization and convergence, Wiley, New York, 1986.Google Scholar
7. Ferland, R., Equations de Boltzmann scalaires : convergence de la solution, fluctuations et propagation du chaos trajectorielle, Thèse de doctorat, Université de Sherbrooke, 1990.Google Scholar
8. Ferland, R., Éluctuations pour des équations de Boltzmann scalaires, Can. J. Math. 43(1991), 975984.Google Scholar
9. Fernique, X., Convergence en loi de fonctions aléatoires continues ou cadlag, propriétés de compacité des lois, Rapport CRM-1716, Centre de recherches mathématiques, Université de Montréal, 1990.Google Scholar
10. Futcher, F.J., Hoare, M.R., Hendriks, E.M. and Ernst, M.H., Soluble Boltzmann equations for internal state and Maxwell models, Phys. (A) 101(1980), 185204.Google Scholar
11. Futcher, F.J. and Hoare, M.R., The p-q Model Boltzmann Equation, Phys. (A) 122( 1983), 516546.Google Scholar
12. Gartner, J., On the McKean-Vlasov limit for interacting diffusions, Math. Nachr. 137(1988), 197248.Google Scholar
13. Holley, R.A. andStroock, D.V., Generalized Ornstein-Uhlenbeck Processes and Infinite Particle Branching Brownian Motion, Publ. Res. Inst. Math. Sci. 14(1978), 741788.Google Scholar
14. Hoare, M.H., Quadratic Transport and Soluble Boltzmann Equation, Adv. Chem. Phys. 56(1984), 1140.Google Scholar
15. Kac, M., Foundations of kinetic theory, Proc. Third Berkeley Symp. Math. Statist. Prob. (ed. Neyman, J.) 3(1956), 171197.Google Scholar
16. Kallianpur, G. and Perez, V.- Abreu, Stochastic Evolution Equations Driven by Nuclear-Space-Valued Martingales, Appl. Math. Optim. 17(1988), 237272.Google Scholar
17. McKean, H.P., An Exponential Formula for Solving Boltzmann's Equation for a Maxwellian Gas, J. Cornbin. Theory 2(1967), 358382.Google Scholar
18. McKean, H.P., Fluctuations in the kinetic theory of gases, Comm. Pure Appl. Math. 28(1975), 435455.Google Scholar
19. Oelschlager, K., Limit theorems for age-structured populations, Ann. Probab. 18(1990), 290318.Google Scholar
20. Parthasarathy, K.R., Probability measures on metric spaces Academic Press, New York, 1969.Google Scholar
21. Shiga, T. and Tanaka, H., Central limit theorem for a system of Markov ian particles with meanfield interactions, Z. Wahrsch. verw. Gekiete 69(1985), 439459.Google Scholar
22. Sznitman, A.-S., Équations de type de Boltzmann, spatialement homogènes, Wahrsch Z. verw. Gekiete 66(1984), 559592.Google Scholar
23. Sznitman, A.-S.,Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated, J. Funct. Anal. 56(1984), 311336.Google Scholar
24. Sznitman, A.-S., A fluctuation result for nonlinear diffusions.In: Infinite dimensional analysis and stochastic processes, (Albeverio, S., éd.). Pitman Adv. Publ. Prog. (1985), 145160.Google Scholar
25. Sznitman, A.-S., Propagation du chaos, École d'été de probabilité de Saint-Hour, 1989.Google Scholar
26. Tanaka, H., Propagation of chaos for certain purely discontinuous Markov processes with interaction, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 17(1970), 253272.Google Scholar
27. Uchiyama, K., Fluctuations of Markovian systems in Kac's caricature of a Maxwellian gas, J. Math. Soc. Japan 35(1983), 477499.Google Scholar
28. Uchiyama, K., A fluctuation problem associated with the Boltzmann equation for a gas molecules with a cutoff potential, Japan J. Math. 9(1983), 2753.Google Scholar
29. Wild, E., On Boltzmann's equation in the kinetic theory of gases, Proc. Camb. Phil. Soc. 47( 1951 ), 602609.Google Scholar