Article contents
Haar Null Sets and the Consistent Reflection of Non-meagreness
Published online by Cambridge University Press: 20 November 2018
Abstract
A subset $X$ of a Polish group $G$ is called Haar null if there exist a Borel set $B\,\supset \,X$ and Borel probability measure $\mu$ on $G$ such that $\mu \left( g\,Bh \right)\,=\,0$ for every $g,\,h\,\in \,G$. We prove that there exist a set $X\,\subset \,\text{R}$ that is not Lebesgue null and a Borel probability measure $\mu$ such that $\mu \left( X\,+\,t \right)\,=\,0$ for every $t\,\in \,\text{R}$. This answers a question from David Fremlin’s problem list by showing that one cannot simplify the definition of a Haar null set by leaving out the Borel set $B$. (The answer was already known assuming the Continuum Hypothesis.)
This result motivates the following Baire category analogue. It is consistent with $ZFC$ that there exist an abelian Polish group $G$ and a Cantor set $C\,\subset \,G$ such that for every non-meagre set $X\,\subset \,\text{G}$ there exists a $t\in \text{G}$ such that $C\,\cap \,\left( X\,+\,t \right)$ is relatively non-meagre in $C$. This essentially generalizes results of Bartoszyński and Burke–Miller.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2014
References
- 4
- Cited by