Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-04T07:25:53.415Z Has data issue: false hasContentIssue false

Homological approximations in persistence theory

Published online by Cambridge University Press:  12 December 2022

Benjamin Blanchette
Affiliation:
Départment de Mathématiques, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada e-mail: Benjamin.Blanchette@USherbrooke.ca
Thomas Brüstle*
Affiliation:
Départment de Mathématiques, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada Department of Mathematics, Bishop’s University, Sherbrooke, QC J1M 1Z7, Canada e-mail: tbruestl@bishops.ca
Eric J. Hanson
Affiliation:
LACIM, Université du Québec à Montréal, Montréal, QC H2L 2C4, Canada e-mail: hanson.eric@uqam.ca

Abstract

We define a class of invariants, which we call homological invariants, for persistence modules over a finite poset. Informally, a homological invariant is one that respects some homological data and takes values in the free abelian group generated by a finite set of indecomposable modules. We focus in particular on groups generated by “spread modules,” which are sometimes called “interval modules” in the persistence theory literature. We show that both the dimension vector and rank invariant are equivalent to homological invariants taking values in groups generated by spread modules. We also show that the free abelian group generated by the “single-source” spread modules gives rise to a new invariant which is finer than the rank invariant.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was supported by the NSERC of Canada. A portion of this work was completed while E.J.H. was affiliated with the Norwegian University of Science and Technology (NTNU).

References

Adachi, T., Iyama, O., and Reiten, I., $\tau$ -tilting theory . Compos. Math. 150(2014), 415452.CrossRefGoogle Scholar
Asashiba, H., Buchet, M., Escolar, E. G., Nakashima, K., and Yoshiwaki, M., On interval decomposability of 2D persistence modules . Comput. Geom. 105–106(2022), 101879.CrossRefGoogle Scholar
Asashiba, H., Escolar, E. G., Nakashima, K., and Yoshiwaki, M., Approximation by interval-decomposables and interval resolutions of persistence modules. Preprint, 2022. arXiv:2207.03663 [math.RT]CrossRefGoogle Scholar
Asashiba, H., Escolar, E. G., Nakashima, K., and Yoshiwaki, M., On approximation of 2D persistence modules by interval-decomposables. Preprint, 2022. arXiv:1911.01637 [math.RT]10.1016/j.jaca.2023.100007CrossRefGoogle Scholar
Assem, I., Simson, D., and Skowroński, A., Elements of the representation theory of associative algebras, volume 1: techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, Cambridge, 2006.CrossRefGoogle Scholar
Auslander, M., Reiten, I., and Smalø, S. O., Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
Auslander, M. and Solberg, Ø., Relative homology and representation theory 1: relative homology and homologically finite subcategories . Comm. Algebra 21(1993), no. 9, 29953031.CrossRefGoogle Scholar
Barannikov, S., The framed Morse complex and its invariants. In: Arnold, V. I. (ed.), Singularities and bifurcations, Advances in Soviet Mathematics, 21, American Mathematical Society, Providence RI, 1994.Google Scholar
Betthauser, L., Bubenik, P., and Edwards, P. B., Graded persistence diagrams and persistence landscapes. Discrete Comput. Geom. 67(2022), 203230.10.1007/s00454-021-00316-1CrossRefGoogle Scholar
Botnan, M. and Crawley-Boevey, W., Decomposition of persistence modules . Proc. Amer. Math. Soc. 148(2020), no. 11, 45814596.CrossRefGoogle Scholar
Botnan, M. B., Oppermann, S., and Oudot, S., Signed barcodes for multi-parameter persistence via rank decompositions and rank-exact resolutions. Preprint, 2022. arXiv:2107.06800 [math.AT]Google Scholar
Brüstle, T., Hassoun, S., Langford, D., and Roy, S., Reduction of exact structures. J. Pure Appl. Algebra 224(2020), no. 4, 106212.CrossRefGoogle Scholar
Bubenik, P. and Elchesen, A., Virtual persistence diagrams, signed measures, Wasserstein distances, and Banach spaces. J. Appl. Comput. Topol. 6(2022), 429474.CrossRefGoogle Scholar
Bubenik, P. and Milićević, N., Homological algebra for persistence modules. Found. Comput. Math. 21(2021), 12331278.CrossRefGoogle Scholar
Bubenik, P. and Scott, J., Categorification of persistent homology. Discrete Comput. Geom. 51(2014), 600627.CrossRefGoogle Scholar
Bühler, T., On the algebraic foundations of bounded cohomology, Memoirs of the American Mathematical Society, 214(1006), American Mathematical Society, Providence, RI, 2011.CrossRefGoogle Scholar
Carlsson, G. and Zomorodian, A., The theory of multidimensional persistence. Discrete Comput. Geom. 42(2009), 7193.CrossRefGoogle Scholar
Chambers, E. and Letscher, D., Persistent homology over directed acyclic graphs. In: Chambers, E., Fasy, B., and Ziegelmeier, L. (eds.), Research in computational topology, Association for Women in Mathematics Series, 13, Springer, Cham, 2018.CrossRefGoogle Scholar
Crawley-Boevey, W., Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(2015), no. 5, 1550066.CrossRefGoogle Scholar
Delfinado, C. J. A. and Edelsbrunner, H., An incremental algorithm for Betti numbers of simplicial complexes . In: SCG’93: proceedings of the ninth annual symposium on computational geometry, Association for Computing Machinery, New York, NY, 1993, pp. 232239.CrossRefGoogle Scholar
Dey, T. K., Kim, W., and Mémoli, F., Computing generalized rank invariant for 2-parameter persistence modules via zigzag persistence and its applications. Preprint, 2022. arXiv:2111.15058 [math.AT]CrossRefGoogle Scholar
Dräxler, P., Reiten, I., Smalø, S. O., and Solberg, Ø., Exact categories and vector space categories. Trans. Amer. Math. Soc. 351(1999), 647682.CrossRefGoogle Scholar
Edelsbrunner, H., Letscher, D., and Zomorodian, A., Topological persistence and simplification. Discrete Comput. Geom. 28(2002), 511533.CrossRefGoogle Scholar
Enochs, E. E. and Jenda, O. M. G., Relative homological algebra, De Gruyter Expositions in Mathematics, 30, De Gruyter, Berlin, 2000.CrossRefGoogle Scholar
Escolar, E. G. and Hiraoka, Y., Persistence modules on commutative ladders of finite type. Discrete Comput. Geom. 55(2016), no. 1, 100157.CrossRefGoogle Scholar
Fomin, S. and Zelevinsky, A., Cluster algebras IV: coefficients . Compos. Math. 143(2007), 112164.CrossRefGoogle Scholar
Frosini, P., A distance for similarity classes of submanifolds of a Euclidean space. Bull. Aust. Math. Soc. 42(1990), 407416.CrossRefGoogle Scholar
Giunti, B., Nolan, J. S., Otter, N., and Waas, L., Amplitudes on abelian categories. Preprint, 2021. arXiv:2107.09036 [math.AT]Google Scholar
Igusa, K., Rock, J. D., and Todorov, G., Continuous quivers of type  $A$ (I) foundations. Rend. Circ. Mat. Palermo (2) (2022). https://doi.org/10.1007/s12215-021-00691-xGoogle Scholar
Iyama, O., Finiteness of representation dimension . Proc. Amer. Math. Soc. 131(2003), no. 4, 10111014.CrossRefGoogle Scholar
Keller, B. and Krause, H., Tilting preserves finite global dimension. C. R. Math. Acad. Sci. Paris 358(2020), no. 5, 563570.CrossRefGoogle Scholar
Kim, W. and Mémoli, F., Generalized persistence diagrams for persistence modules over posets. J. Appl. Comput. Topol. 5(2021), 533581.CrossRefGoogle Scholar
Kim, W. and Moore, S., The generalized persistence diagram encodes the bigraded Betti numbers. Preprint, 2022. arXiv:2111.02551 [math.AT]Google Scholar
King, A. D., Moduli of representations of finite dimensional algebra . Quart. J. Math. Oxford 2(1994), no. 45, 515530.CrossRefGoogle Scholar
Krause, H., Homological theory of representations, Cambridge Studies in Advanced Mathematics, 195, Cambridge University Press, Cambridge, 2021.CrossRefGoogle Scholar
McCleary, A. and Patel, A., Edit distance and persistence diagrams over lattices. SIAM J. Appl. Algebra Geom. 6(2022), no. 2, 134155.CrossRefGoogle Scholar
Miller, E., Homological algebra of modules over posets. Preprint, 2020. arXiv:2008.00063 [math.AT]Google Scholar
Oudot, S., Persistence theory: from quiver representations to topological data analysis, Mathematical Surveys and Monographs, 209, American Mathematical Society, Providence RI, 2015.CrossRefGoogle Scholar
Oudot, S. and Scoccola, L., On the stability of multigraded Betti numbers and Hilbert functions. Preprint, 2022. arXiv:2112.11901 [math.AT]Google Scholar
Patel, A., Generalized persistence diagrams. J. Appl. Comput. Topol. 1(2018), 123.Google Scholar
Ringel, C. M., Iyama’s finiteness theorem via strongly quasi-hereditary algebras . J. Pure Appl. Algebra 214(2010), no. 9, 16871692.CrossRefGoogle Scholar
Robins, V., Towards computing homology from finite approximations . Topology Proc. 24(1999), 503532.Google Scholar
Simson, D., Linear representations of partially ordered sets and vector space categories, Algebra, Logic and Applications Series, 4, Gordon and Breach Science Publishers, Yverdon, Switzerland, 1992.Google Scholar
Stanley, R. P., Enumerative combinatorics. Vol. I, 2nd ed., Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2011.CrossRefGoogle Scholar
Thomas, A. L., Invariants and metrics for multiparameter persistent homology. Ph.D. thesis, Duke University, 2019.Google Scholar