Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-29T10:16:14.823Z Has data issue: false hasContentIssue false

Linear Combinations of BernsteinPolynomials

Published online by Cambridge University Press:  20 November 2018

P. L. Butzer*
Affiliation:
The University of Toronto and McGill University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If f(x) is denned on [0, 1], then its corresponding Bernstein polynomial

approaches f(x) uniformly on [0, 1], if f(x) is continuous on [0, 1]. If f(x) is bounded on [0, 1], then at every point x where the second derivative exists (Voronowskaja [7], see also [5])

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1953

References

1. Bernstein, S. N., Complétement a Varticle de E. Voronowskaja, C. R. Acad. Sci. U.R.S.S. (1932), 8692.Google Scholar
2. Butzer, P. L., On Bernstein polynomials, Thesis, University of Toronto Library (1951).Google Scholar
3. Feller, W., An introduction to probability theory and its applications (New York, 1950).Google Scholar
4. Jackson, D., The theory of approximation (Amer. Math. Soc. Coll. Publ., vol. 11, New York, 1930).Google Scholar
5. Lorentz, G. G., Bernstein polynomials (Toronto, 1953).Google Scholar
6. Popoviciu, T., Sur Vapproximation des fonctions convexes d'ordre supérieur, Mathematica, Cluj, 10 (1935), 4954.Google Scholar
7. Voronowskaja, E., Détermination de la forme asymptotique d'approximation des fonctions par les polynomes de M. Bernstein, C. R. Acad. Sci. U.R.S.S. (1932), 7985.Google Scholar