Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-08T15:40:35.592Z Has data issue: false hasContentIssue false

Non-Amphicheiral Codimension 2 Knots

Published online by Cambridge University Press:  20 November 2018

F. González-Acuña
Affiliation:
Instituto de Matemáticas de la U.N.A.M., Mexico
José M. Montesinos
Affiliation:
The Institute for Advanced Study, Princeton, New Jersey
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An n-knot (Sn+2, Sn) is amphicheiral if there is an orientation reversing autohomeomorphism of Sn+2 leaving Sn invariant as a set. It is invertible if there is an orientation preserving autohomeomorphism of Sn+2 whose restriction to Sn is an orientation reversing autohomeomorphism of Sn onto itself. In 1961 Fox [8, Problem 35] asked if there exist non-amphicheiral locally flat 2-knots. We will prove the following THEOREM 1. For any integer n there are smooth n-knots which are neither amphicheiral nor invertible.

A knot (Sn+2, Sn) is + amphicheiral (resp. —amphicheiral) if there is an orientation reversing autohomeomorphism f of Sn+2 leaving Sn invariant such that f| Snpreserves (resp. reverses) orientation.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

References

1. Akbulut, S. and Kirby, R., An exotic involution of S4 (preprint).Google Scholar
2. Becerra, E., Simple homotopy equivalent knot complements, Ph.D. Thesis (1976), Instituto de Matemâticas de la U.N.A.M., Mexico.Google Scholar
3. Cappell, S. S., Superspinning and knot complement, in Topology of manifolds (Markham Publishing Co., 1970), 358383.Google Scholar
4. Cappell, S. S. and Shaneson, J. L., Topological knots and knot cobordism, Topolog. 12 (1973), 3340.Google Scholar
5. Cohen, M. M., A course in simple homotopy theory, Springer (1970).Google Scholar
6. Crowell, R. H., The Group G'/G” of a knot group, Duke Math. J. 30 (1963), 349354.Google Scholar
7. Farber, M. S., Linking coefficients and two dimensional knots, Soviet Math. Dokl. 16 (1975), 647650.Google Scholar
8. Fox, R. H., Some problems in knot theory, in Topology of o-manifolds and related topics (Prentice Hall, N.J., 1962), 168176.Google Scholar
9. Fuchs, L., Infinite abelian groups (Academic Press 36, 1970).Google Scholar
10. Hilton, P. J. and Wylie, S., Homology theory (Cambridge University Press, 1960).Google Scholar
11. Kearton, C., Noninvertible knots of codimension 2, Proc. Am. Math. Soc. 40 (1973), 274276.Google Scholar
12. Kervaire, M., Les noeuds de dimensions supérieures, Bull. Soc. Math. Franc. 03 (1965), 225271.Google Scholar
13. Kervaire, M., On higher dimensional knots, Differential and Combinatorial Topology, A symposium in honor of Marston Morse, Princeton Univ. Press (1965), 105119.Google Scholar
14. Kirby, R. C. and Siebenmann, L. C., Codimension two locally flat imbeddings, Notices Amer. Math. Soc. 18 (1971), 983.Google Scholar
15. Landau, E., Vorlesungen uber Zahlentheorie, Verlag bon S. Hirzel Leipzig (1974).Google Scholar
16. Levine, J., Knot cobordism groups in codimension two, Comm. Math. Helv. 44 (1969), 229244.Google Scholar
17. Levine, J., Knot modules, Annals of Math Studies 84 and Trans. Amer. Math. Soc. 229 (1977), 150.Google Scholar
18. Sumners, D. W., Homotopy torsion in codimension two knots, Proc. Amer. Math. Soc. 24 (1970), 229240.Google Scholar
19. Sumners, D. W., Polynomial invariants and the integral homology of coverings of knots and links, Inventiones Math. 15 (1972), 7890.Google Scholar
20. Trotter, H. F. Non-invertible knots exist, Topolog. 2 (1963), 275280.Google Scholar
21. Van der Waerden, B. L., Moderne algebra (Springer, 1950).Google Scholar
22. Wall, C. T. C., Classification problems in differential topology—VI, Topolog. 6 (1967), 273296.Google Scholar
23. Yanagawa, T., On ribbon 2-knots, Osaka j . Math. 6 (1969), 447464.Google Scholar
24. Zeeman, E. C., Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471495.Google Scholar