Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-13T08:05:41.805Z Has data issue: false hasContentIssue false

Adult Onset Spinocerebellar Ataxia in a Canadian Movement Disorders Clinic

Published online by Cambridge University Press:  02 December 2014

Scott Kraft*
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Sarah Furtado
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Ranjit Ranawaya
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Jillian Parboosingh
Affiliation:
Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
Stacey Bleoo
Affiliation:
Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
Karen McElligott
Affiliation:
Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
Peter Bridge
Affiliation:
Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
Sian Spacey
Affiliation:
Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
Shyamal Das
Affiliation:
Bangur Neurological Institute, Kolkata, India
Oksana Suchowersky
Affiliation:
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
*
The Movement Disorders Program, Dept. of Clinical Neurosciences, University of Calgary, 3350 Hospital Dr. NW, Calgary, Alberta, Canada T2N 4N1.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The spinocerebellar ataxias (SCAs) are a genetically and clinically heterogeneous group of neurodegenerative disorders. Relative frequencies vary within different ethnic groups and geographical locations.

Objectives:

1) To determine the frequencies of hereditary and sporadic adult onset SCAs in the Movement Disorders population; 2) to assess if the fragile X mental retardation gene 1 (FMR1) premutation is found in this population.

Methods:

A retrospective chart review of individuals with a diagnosis of adult onset SCA was carried out. Testing for SCA types 1, 2, 3, 6, 7, and 8, Dentatorubral-pallidoluysian atrophy (DRPLA), Friedreich ataxia and the FMR1 expansion was performed.

Results:

A total of 69 patients in 60 families were identified. Twenty-one (35%) of the families displayed autosomal dominant and two (3.3%) showed autosomal recessive (AR) pattern of inheritance. A positive but undefined family history was noted in nine (15%). The disorder appeared sporadic in 26 patients (43.3%). In the AD families, the most common mutation was SCA3 (23.8%) followed by SCA2 (14.3%) and SCA6 (14.3%). The SCA1 and SCA8 were each identified in 4.8%. FA was found in a pseudodominant pedigree, and one autosomal recessive pedigree. One sporadic patient had a positive test (SCA3).Dentatorubral-pallidoluysian atrophy and FMR1 testing was negative.

Conclusion:

A positive family history was present in 53.3% of our adult onset SCA patients. A specific genetic diagnosis could be given in 61.9% of dominant pedigrees with SCA3 being the most common mutation, followed by SCA2 and SCA6. The yield in sporadic cases was low. The fragile X premutation was not found to be responsible for SCA.

Résumé:

RÉSUMÉ:Contexte:

Les ataxies spinocérébelleuses (ASCs) constituent un groupe hétérogène de maladies neurodégénératives tant au point de vue génétique qu’au point de vue clinique. Leur fréquence relative est très variable selon le groupe ethnique et le lieu géographique.

Objectifs:

1) déterminer la fréquence d’ASCs héréditaires et sporadiques débutant chez l’adulte chez des patients fréquentant une clinique de désordres du mouvement ; 2) évaluer si on retrouve chez ces patients des prémutations du gène FMR1 causant le syndrome de retard mental du X fragile.

Méthodes:

Nous avons procédé à une revue rétrospective de dossiers de patients chez qui un diagnostic d’ASC de l’adulte a été posé. Des tests de biologie moléculaire ont été faits pour détecter des anomalies des gènes responsables de l’ASC de type 1, 2, 3, 6, 7 et 8, de l’atrophie dentato-rubro-pallido-luysienne (ADRPL), de l’ataxie de Friedrich (AF) ainsi que l’expansion de FMR1.

Résultats:

69 patients appartenant à 60 familles différentes ont été identifiés. Chez 21 familles (35%), l’hérédité était autosomique dominante (AD) et chez 2 (3,3%) l’hérédité était autosomique récessive (AR). Une histoire familiale positive mal définie était présente chez 9 familles (15%). La maladie semblait sporadique chez 26 patients (43,3%). Chez les familles où l’hérédité était AD, la mutation la plus fréquents était une mutation du gène ASC3 (23,8%) suivie d’ASC2 (14,3%) et d’ASC6 (14,3%). Une mutation du gène ASC1 et ASC8 a été identifiée chez 4,8% des patients. Une mutation du gène de l’AF a été identifiée dans un pedigree où la maladie était pseudo dominante et dans un où la maladie était AR. Chez un cas sporadique on a trouvé une mutation du gène ASC3. Les tests pour l’ADRPL et le FMR1 étaient négatif.

Conclusion:

Une histoire familiale positive était présente chez 53,3% des patients atteints d’ASC adulte. Un diagnostic génétique spécifique a pu être établi chez 61,9% des pedigrees où l’hérédité était dominante et une mutation du gène ASC3 était l’anomalie la plus fréquente, suivie d’ASC2 et d’ASC6. Le rendement était faible chez les cas sporadiques. La prémutation du gène responsable du syndrome du X fragile n’était pas responsable de l’ASC chez nos cas.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. Harding, AE. Clinical features and classification of inherited ataxias. Adv Neurol 1993; 61:114.Google ScholarPubMed
2. Orr, HT, Chung, MY, Banfi, S, et al. Expansion of an unstabletrinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993; 4:221226.Google Scholar
3. Imbert, G, Saudou, F, Yvert, G, et al. Cloning of the gene forspinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14:285291.CrossRefGoogle ScholarPubMed
4. Pulst, SM, Nechiporuk, A, Nechiporuk, T, et al. Moderate expansionof a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996; 14:269276.CrossRefGoogle Scholar
5. Sanpei, K, Takano, H, Igarashi, S, et al. Identification of thespinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996; 14:277284.CrossRefGoogle ScholarPubMed
6. Kawaguchi, Y, Okamoto, T, Taniwaki, M, et al. CAG expansions in anovel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994; 8:221228.Google Scholar
7. Zhuchenko, O, Bailey, J, Bonnen, P, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997; 15:6269.Google Scholar
8. Lindblad, K, Savontaus, ML, Stevanin, G, et al. An expanded CAGrepeat sequence in spinocerebellar ataxia type 7. Genome Res 1996; 6:965971.Google Scholar
9. David, G, Abbas, N, Stevanin, G, et al. Cloning of the SCA7 genereveals a highly unstable CAG repeat expansion. Nat Genet 1997; 17:6570.Google Scholar
10. Zuhlke, C, Hellenbroich, Y, Dalski, A, et al. Different types of repeatexpansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet 2001; 9:160164.Google Scholar
11. Nakamura, K, Jeong, SY, Uchihara, T, et al. SCA17, a novelautosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001; 10:14411448.CrossRefGoogle ScholarPubMed
12. Koide, R, Ikeuchi, T, Onodera, O, et al. Unstable expansion of CAGrepeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994; 6:913.Google Scholar
13. Holmes, SE, O’Hearn, EE, McInnis, MG, et al. Expansion of a novelCAG trinucleotide repeat in the 5’ region of PPP2R2B is associated with SCA12. Nat Genet 1999; 23:391392.Google Scholar
14. Campuzano, V, Montermini, L, Molto, MD, et al. Friedreich’s ataxia:autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996; 271:14231427.Google Scholar
15. Koob, MD, Moseley, ML, Schut, LJ, et al. An untranslated CTGexpansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999; 21:379384.CrossRefGoogle Scholar
16. Worth, PF, Houlden, H, Giunti, P, Davis, MB, Wood, NW. Large,expanded repeats in SCA8 are not confined to patients with cerebellar ataxia. Nat Genet 2000; 24:214215.Google Scholar
17. Vincent, JB, Neves-Pereira, ML, Paterson, AD, et al. An unstabletrinucleotide-repeat region on chromosome 13 implicated in spinocerebellar ataxia: a common expansion locus. Am J Hum Genet 2000; 66:819829.Google Scholar
18. Schols, L, Bauer, I, Zuhlke, C, et al. Do CTG expansions at the SCA8locus cause ataxia? Ann Neurol 2003; 54:110115.CrossRefGoogle ScholarPubMed
19. Matsuura, T, Yamagata, T, Burgess, DL, et al. Large expansion of theATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26:191194.CrossRefGoogle ScholarPubMed
20. Flanigan, K, Gardner, K, Alderson, K, et al. Autosomal dominantspinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 1996; 59:392399.Google Scholar
21. Nagaoka, U, Takashima, M, Ishikawa, K, et al. A gene on SCA4 locuscauses dominantly inherited pure cerebellar ataxia. Neurology 2000; 54:19711975.Google Scholar
22. Ranum, LP, Schut, LJ, Lundgren, JK, Orr, HT, Livingston, DM. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. NatGenet 1994; 8:280284.Google Scholar
23. Worth, PF, Giunti, P, Gardner-Thorpe, C, et al. Autosomal dominantcerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet 1999; 65:420426.CrossRefGoogle Scholar
24. Herman-Bert, A, Stevanin, G, Netter, JC, et al. Mapping ofspinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mentalretardation. Am J Hum Genet 2000; 67:229235.Google Scholar
25. Yamashita, I, Sasaki, H, Yabe, I, et al. A novel locus for dominantcerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann Neurol 2000; 48:156163.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
26. Brkanac, Z, Bylenok, L, Fernandez, M, et al. A new dominantspinocerebellar ataxia linked to chromosome 19q13.4-qter. Arch Neurol 2002; 59:12911295.CrossRefGoogle ScholarPubMed
27. Miyoshi, Y, Yamada, T, Tanimura, M, et al. A novel autosomaldominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 2001; 57:96100.Google Scholar
28. Brkanac, Z, Fernandez, M, Matsushita, M, et al. Autosomal dominantsensory/motor neuropathy with Ataxia (SMNA): Linkage to chromosome 7q22-q32. Am J Med Genet 2002; 114:450457.CrossRefGoogle ScholarPubMed
29. Verbeek, DS, Schelhaas, JH, Ippel, EF, et al. Identification of a novelSCA locus ( SCA19) in a Dutch autosomal dominant cerebellar ataxia family on chromosome region 1p21-q21. Hum Genet 2002; 111:388393.Google Scholar
30. Vuillaume, I, Devos, D, Schraen-Maschke, S, et al. A new locus forspinocerebellar ataxia (SCA21) maps to chromosome 7p21.3-p15.1. Ann Neurol 2002; 52:666670.Google Scholar
31. Chung, MY, Lu, YC, Cheng, NC, Soong, BW. A novel autosomaldominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain 2003; 126:12931299.Google Scholar
32. Stevanin, G, Bouslam, N, Thobois, S, et al. Spinocerebellar ataxiawith sensory neuropathy (SCA25) maps to chromosome 2p. Ann Neurol 2004; 55:97104.Google Scholar
33. Knight, MA, Gardner, RJ, Bahlo, M, et al. Dominantly inheritedataxia and dysphonia with dentate calcification: spinocerebellar ataxia type 20. Brain 2004; 127:11721181.Google Scholar
34. Hara, K, Fukushima, T, Suzuki, T, et al. Japanese SCA families withan unusual phenotype linked to a locus overlapping with SCA15locus. Neurology 2004; 62:648651.Google Scholar
35. HUGO Gene Nomenclature Committee: (Accessed December 5, 2004 at http://www.gene.ucl.ac.uk/nomenclature/).Google Scholar
36. Swartz, BE, Burmeister, M, Somers, JT R et al. A form of inheritedcerebellar ataxia with saccadic intrusions, increased saccadic speed, sensory neuropathy, and myoclonus. Ann N Y Acad Sci 2002; 956:441444.CrossRefGoogle ScholarPubMed
37. Online Mendelian Inheritance in Man: (Accessed December 5, 2004 at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM).Google Scholar
38. Kremer, EJ, Pritchard, M, Lynch, M, et al. Mapping of DNAinstability at the fragile X toa trinucleotide repeat sequence p(CCG)n. Science 1991; 252:17111714.Google Scholar
39. Rousseau, F, Rouillard, P, Morel, ML, Khandjian, EW, Morgan, K. Prevalence of carriers of premutation-size alleles of the FMRI gene--and implications for the population genetics of the fragile X syndrome. Am J Hum Genet 1995; 57:10061018.Google ScholarPubMed
40. Hagerman, RJ, Leehey, M, Heinrichs, W, et al. Intention tremor,parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 2001; 57:127130.Google Scholar
41. Greco, CM, Hagerman, RJ, Tassone, F, et al. Neuronal intranuclearinclusions in a new cerebellar tremor/ataxia syndrome among fragile X carriers. Brain 2002; 125:17601771.Google Scholar
42. Jacquemont, S, Hagerman, RJ, Leehey, M, et al. Fragile Xpremutation tremor/ataxia syndrome: molecular, clinical, and neuroimaging correlates. Am J Hum Genet 2003; 72:869878.Google Scholar
43. Leehey, MA, Munhoz, RP, Lang, AE, et al. The fragile X premutationpresenting as essential tremor. Arch Neurol 2003; 60:117121.CrossRefGoogle ScholarPubMed
44. Munoz, DG. Intention tremor, parkinsonism, and generalized brainatrophy in male carriers of fragile X. Neurology 2002; 58:987;author reply 987-988.Google Scholar
45. Brunberg, JA, Jacquemont, S, Hagerman, RJ, et al. Fragile Xpremutation carriers: characteristic MR imaging findings of adult male patients with progressive cerebellar and cognitive dysfunction. AJNR Am J Neuroradiol 2002; 23:17571766.Google Scholar
46. Silveira, I, Lopes-Cendes, I, Kish, S, et al. Frequency ofspinocerebellar ataxia type 1, dentatorubropallidoluysian atrophy, and Machado-Joseph disease mutations in a large group of spinocerebellar ataxia patients. Neurology 1996; 46:214218.Google Scholar
47. Warner, TT, Lennox, GG, Janota, I, Harding, AE. Autosomal-dominant dentatorubropallidoluysian atrophy in the UnitedKingdom. Mov Disord 1994; 9:289296.CrossRefGoogle Scholar
48. Cossee, M, Durr, A, Schmitt, M, et al. Friedreich's ataxia: pointmutations and clinical presentation of compound heterozygotes. Ann Neurol 1999; 45:200206.3.0.CO;2-U>CrossRefGoogle Scholar
49. Storey, E, du Sart, D, Shaw, JH, et al. Frequency of spinocerebellarataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. Am J Med Genet 2000; 95:351357.Google Scholar
50. Moseley, ML, Benzow, KA, Schut, LJ, et al. Incidence of dominantspinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 1998; 51:16661671.CrossRefGoogle ScholarPubMed
51. Geschwind, DH, Perlman, S, Figueroa, KP K et al. Spinocerebellarataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology 1997; 49:12471251.Google Scholar
52. Geschwind, DH, Perlman, S, Figueroa, CP, Treiman, LJ, Pulst, SM. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am J Hum Genet 1997; 60:842850.Google Scholar
53. Schols, L, Amoiridis, G, Buttner, T, Pet al. Autosomal dominantcerebellar ataxia: phenotypic differences in genetically definedsubtypes? Ann Neurol 1997; 42:924932.CrossRefGoogle Scholar
54. Cellini, E, Forleo, P, Nacmias, B, et al. Clinical and genetic analysisof hereditary and sporadic ataxia in central Italy. Brain Res Bull 2001; 56:363366.Google Scholar
55. Pareyson, D, Gellera, C, Castellotti, B, et al. Clinical and molecularstudies of 73 Italian families with autosomal dominant cerebellar ataxia type I: SCA1 and SCA2 are the most common genotypes. J Neurol 1999; 246:389393.CrossRefGoogle ScholarPubMed
56. Pujana, MA, Corral, J, Gratacos, M, et al. Spinocerebellar ataxias inSpanish patients: genetic analysis of familial and sporadic cases. The Ataxia Study Group. Hum Genet 1999; 104:516522.Google Scholar
57. Jardim, LB, Silveira, I, Pereira, ML, et al. A survey of spinocerebellarataxia in South Brazil — 66 new cases with Machado-Joseph disease, SCA7, SCA8, or unidentified disease-causing mutations. J Neurol 2001; 248:870876.Google Scholar
58. Silveira, I, Coutinho, P, Maciel, P, et al. Analysis of SCA1, DRPLA,MJD, SCA2, and SCA6 CAG repeats in 48 Portuguese ataxia families. Am J Med Genet 1998; 81:134138.Google Scholar
59. Soong, BW, Lu, YC, Choo, KB, Lee, HY. Frequency analysis ofautosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Arch Neurol 2001; 58:11051109.Google Scholar
60. Tang, B, Liu, C, Shen, L, et al. Frequency of SCA1, SCA2,SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotiderepeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch Neurol 2000; 57:540544.Google Scholar
61. Kim, JY, Park, SS, Joo, SI, Kim, JM, Jeon, BS. Molecular analysis ofspinocerebellar ataxias in Koreans: frequencies and reference ranges of SCA1, SCA2, SCA3, SCA6, and SCA7. Mol Cells 2001; 12:336341.Google Scholar
62. Sasaki, H, Yabe, I, Yamashita, I, Tashiro, K. Prevalence of tripletrepeat expansion in ataxia patients from Hokkaido, the northernmost island of Japan. J Neurol Sci 2000; 175:4551.Google Scholar
63. Onodera, Y, Aoki, M, Tsuda, T, et al. High prevalence ofspinocerebellar ataxia type 1 (SCA1) in an isolated region of Japan. J Neurol Sci 2000; 178:153158.Google Scholar
64. Matsumura, R, Futamura, N, Ando, N, Ueno, S. Frequency ofspinocerebellar ataxia mutations in the Kinki district of Japan. Acta Neurol Scand 2003; 107:3841.Google Scholar
65. Basu, P, Chattopadhyay, B, Gangopadhaya, PK, et al. Analysis ofCAG repeats in SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci in spinocerebellar ataxia patients and distribution of CAG repeats at the SCA1, SCA2 and SCA6 loci in nine ethnic populations of eastern India. Hum Genet 2000; 106:597604.Google Scholar
66. Saleem, Q, Choudhry, S, Mukerji, M, et al. Molecular analysis ofautosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation. Hum Genet 2000; 106:179187.Google Scholar
67. Proportion of visible minorities, census metropolitan areas, 2001, 1996 and1991: (Accessed July 6, 2003 at http://www12.statcan.ca/English/census01/products/analytic/companion/etoimm/subprovs.cfm).Google Scholar
68. Furtado, S, Farrer, M, Tsuboi, Y, et al. SCA-2 presenting asparkinsonism in an Alberta family: clinical, genetic, and PET findings. Neurology 2002; 59:16251627.CrossRefGoogle Scholar
69. Shan, DE, Soong, BW, Sun, CM, et al. Spinocerebellar ataxia type 2presenting as familial levodopa-responsive parkinsonism. AnnNeurol 2001; 50:812815.Google Scholar
70. Gwinn-Hardy, K, Chen, JY, Liu, HC, et al. Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese. Neurology 2000; 55:800805.Google Scholar
71. De Michele, G, Filla, A, Barbieri, F, et al. Late onset recessive ataxiawith Friedreich's disease phenotype. J Neurol Neurosurg Psychiatry 1989; 52:13981401.Google Scholar
72. De Michele, G, Filla, A, Cavalcanti, F, et al. Late onset Friedreich'sdisease: clinical features and mapping of mutation to the FRDAlocus. J Neurol Neurosurg Psychiatry 1994; 57:977979.CrossRefGoogle Scholar
73. Gellera, C, Pareyson, D, Castellotti, B, et al. Very late onsetFriedreich's ataxia without cardiomyopathy is associated with limited GAA expansion in the X25 gene. Neurology 1997; 49:11531155.Google Scholar
74. Bidichandani, SI, Garcia, CA, Patel, PI, Dimachkie, MM. Very late-onset Friedreich ataxia despite large GAA triplet repeatexpansions. Arch Neurol 2000; 57:246251.Google Scholar
75. Durr, A, Cossee, M, Agid, Y, et al. Clinical and Genetic Abnormalitiesin Patients with Friedreich's Ataxia. N Engl J Med 1996; 335:11691175. CrossRefGoogle Scholar
76. McDaniel, DO, Keats, B, Vedanarayanan, VV, Subramony, SH. Sequence variation in GAA repeat expansions may cause differential phenotype display in Friedreich's ataxia. Mov Disord 2001; 16:11531158.Google Scholar
77. Harding, AE, Zilkha, KJ. ’Pseudo-dominant’ inheritance inFriedreich's ataxia. J Med Genet 1981; 18:285287.Google Scholar
78. Webb, S, Doudney, K, Pook, M, Chamberlain, S, Hutchinson, M. Afamily with pseudodominant Friedreich's ataxia showing marked variation of phenotype between affected siblings. J Neurol Neurosurg Psychiatry 1999; 67:217219.Google Scholar
79. Cossee, M, Schmitt, M, Campuzano, V, et al. Evolution of theFriedreich's ataxia trinucleotide repeat expansion: founder effect and premutations. Proc Natl Acad Sci U S A 1997; 94:74527457.Google Scholar
80. Epplen, C, Epplen, JT, Frank, G, et al. Differential stability of the(GAA)n tract in the Friedreich ataxia (STM7) gene. Hum Genet 1997; 99:834836.Google Scholar
81. Schols, L, Szymanski, S, Peters, S, et al. Genetic background ofapparently idiopathic sporadic cerebellar ataxia. Hum Genet 2000; 107:132137.Google Scholar
82. Abele, M, Burk, K, Schols, L, et al. The aetiology of sporadic adult-onset ataxia. Brain 2002; 125:961968.CrossRefGoogle ScholarPubMed
83. Futamura, N, Matsumura, R, Fujimoto, Y, et al. CAG repeatexpansions in patients with sporadic cerebellar ataxia. Acta Neurol Scand 1998; 98:5559.Google Scholar
84. Macpherson, J, Waghorn, A, Hammans, S, Jacobs, P. Observation ofan excess of fragile-X premutations in a population of males referred with spinocerebellar ataxia. Hum Genet 2003; 112(5–6): 619620.Google Scholar
85. Zhang, L, Leehey, M, Wheelock, V, et al. A subtype of multiplesystem atrophy with cerebellar ataxia (MSA-C): The fragile X-associated tremor/ataxia syndrome. (Abstract). Neurology 2003; 60:A331470.Google Scholar
86. Hagerman, RJ, Zhang, L, Brunberg, J, et al. Two female cases of thefragile X premutation tremor/ataxia syndrome: cognitive, molecular and radiological studies. (Abstract). Neurology 2003; 60:A331.Google Scholar
87. Allingham-Hawkins, DJ, Babul-Hirji, R, Chitayat, D, et al. Fragile Xpremutation is a significant risk factor for premature ovarian failure: the International Collaborative POF in Fragile X study-preliminary data. Am J Med Genet 1999; 83:322325.Google Scholar
88. Rogers, C, Partington, MW, Turner, GM. Tremor, ataxia and dementiain older men may indicate a carrier of the fragile X syndrome. Clin Genet 2003; 64:5456.Google Scholar
89. Jackson, JF, Currier, RD, Terasaki, PI, Morton, NE. Spinocerebellarataxia and HLA linkage: risk prediction by HLA typing. N Engl J Med 1977; 296:11381141.Google Scholar
90. Banfi, S, Servadio, A, Chung, MY, et al. Identification andcharacterization of the gene causing type 1 spinocerebellar ataxia. Nat Genet 1994; 7:513520.Google Scholar
91. Gispert, S, Twells, R, Orozco, G, et al. Chromosomal assignment ofthe second locus for autosomal dominant cerebellar ataxia (SCA2) to chromosome 12q23-24.1. Nat Genet 1993; 4:295299.CrossRefGoogle Scholar
92. Orozco Diaz, G, Nodarse Fleites, A, Cordoves Sagaz, R, Auburger, G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology 1990; 40:13691375.CrossRefGoogle ScholarPubMed
93. Coutinho, P, Andrade, C. Autosomal dominant system degenerationin Portuguese families of the Azores Islands. A new genetic disorder involving cerebellar, pyramidal, extrapyramidal and spinal cord motor functions. Neurology 1978; 28:703709.Google Scholar
94. Tuite, PJ, Rogaeva, EA, St George-Hyslop, PH, Lang, AE. Dopa-responsive parkinsonism phenotype of Machado-Joseph disease: confirmation of 14q CAG expansion. Ann Neurol 1995; 38:684687.Google Scholar
95. Takiyama, Y, Nishizawa, M, Tanaka, H, et al. The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet 1993; 4:300304.Google Scholar
96. Schols, L, Vieira-Saecker, AM, Schols, S, et al. Trinucleotideexpansion within the MJD1 gene presents clinically as spinocerebellar ataxia and occurs most frequently in German SCA patients. Hum Mol Genet 1995; 4:10011005.Google Scholar
97. Nakano, KK, Dawson, DM, Spence, A. Machado disease. Ahereditary ataxia in Portuguese emigrants to Massachusetts. Neurology 1972; 22:4955.CrossRefGoogle Scholar
98. Giunti, P, Stevanin, G, Worth, PF, et al. Molecular and clinical studyof 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet 1999; 64:15941603.Google Scholar
99. Matsuura, T, Achari, M, Khajavi, M, et al. Mapping of the gene for anovel spinocerebellar ataxia with pure cerebellar signs and epilepsy. Ann Neurol 1999; 45:407411.Google Scholar
100. Grewal, RP, Tayag, E, Figueroa, KP, et al. Clinical and geneticanalysis of a distinct autosomal dominant spinocerebellar ataxia. Neurology 1998; 51:14231426.Google Scholar
101. Storey, E, Gardner, RJ, Knight, MA, et al. A new autosomal dominantpure cerebellar ataxia. Neurology 2001; 57:19131915.Google Scholar
102. Schelhaas, HJ, Ippel, PF, Hageman, G, et al. Clinical and geneticanalysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. J Neurol 2001; 248:113120.CrossRefGoogle Scholar
103. Devos, D, Schraen-Maschke, S, Vuillaume, I, et al. Clinical featuresand genetic analysis of a new form of spinocerebellar ataxia. Neurology 2001; 56:234238.CrossRefGoogle Scholar