Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T05:09:57.693Z Has data issue: false hasContentIssue false

Age-Related Changes in Muscle Fatigue Resistance in Humans

Published online by Cambridge University Press:  02 December 2014

K. Ming Chan
Affiliation:
Division of Physical Medicine and Rehabilitation, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada Division of Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
Asim J. Raja
Affiliation:
Division of Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
Fay J. Strohschein
Affiliation:
Division of Neuroscience, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
Katherine Lechelt
Affiliation:
Department of Geriatric Medicine, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

The goal of this study was to compare the relative contributions from the muscle and the central nervous system to muscle fatigue resistance in aging.

Methods:

Each subject carried out 90 s of sustained maximal voluntary isometric contraction (MVC) of the thumb using the thenar and forearm thumb muscles. Contractile capacity of the thenar muscles was assessed through tetanic stimulation of the median nerve. Interpolated doublets delivered during an MVC represented the overall voluntary activation level while transcranial cortical stimulation with an electromagnetic stimulator was used to assess motor output upstream from the corticomotoneuronal pathway.

Results:

Nine elderly subjects [four females and five males, 70±9 years old (mean±SD)] and 10 younger subjects (five females and five males, 30±6 years old) were tested. After the fatiguing exercise, the elderly group's MVC declined by 29% as opposed to 47% in the younger group (p<0.01). The elderly group's greater fatigue resistance was accounted for by increased fatigue resistance at the muscle level as well as in the central nervous system. At least some of the decline in the central motor drive was upstream from the corticomotoneuronal pathway.

Conclusion:

The higher muscle fatigue resistance in the elderly group was attributable to differences in both the peripheral and central nervous systems.

Résumé:

RÉSUMÉ:Objectif:

Le but de cette éde éit de comparer les contributions relatives du muscle et du systè nerveux central àa réstance àa fatigue associéau vieillissement.

Méodes:

Chaque sujet a effectué0 s de contractions isoméiques volontaires maximum soutenues (CVM) du pouce en utilisant les muscles de l’énence thér et de l’avant-bras. La capacitéontractile des muscles de l’énence thér a é éluéau moyen d’une stimulation ténique du nerf méan. Des doublets interpolédévrépendant une CVM repréntaient le niveau d’activation volontaire géral alors que la stimulation corticale transcrâenne par un stimulateur éctromagnéque a é utiliséour éluer le dét moteur en amont de la voir corticomotoneuronale.

Réltats:

Neuf sujets âs {quatre femmes et cinq hommes, â moyen 70 ± 9 ans (moyenne ± DS)} et 10 sujets plus jeunes (cinq femmes et cinq hommes, â moyen 30 ± 6 ans) ont é élué Aprèl’exercice induisant la fatigue, la CVM du groupe â a diminuée seulement 29% comparé 47% dans le groupe plus jeune (<.01). La plus grande réstance àa fatigue du groupe â s’explique par une augmentation de la réstance àa fatigue au niveau musculaire ainsi que dans le systè nerveux central. Au moins une partie du déin de l’activitéotrice centrale éit en amont de la voie corticomotoneuronale.

Conclusion:

La plus grande réstance àa fatigue musculaire dans le groupe â éit attribuable àes diffénces tant dans le systè nerveux péphéque que dans le systè nerveux central.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2000

References

1. Lexell, J, Taylor, CC, Sjostrom, M. What is the cause of the aging atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15 to 83 year old men. J Neurol Sci 1988; 84:275294.CrossRefGoogle ScholarPubMed
2. Campbell, MJ, McComas, AJ, Petito, F. Physiological changes in ageing muscles. J Neurol Neurosurg Psychiatry 1973; 36:174182.CrossRefGoogle ScholarPubMed
3. Doherty, TJ, Vandervoort, AA, Brown, WF. Effects of ageing on the motor unit: a brief review. Can J Appl Physiol 1993; 18:331358.Google Scholar
4. Doherty, TJ, Brown, WF. Age-related changes in human thenar motor unit twitch contractile properties. J Appl Physiol 1997; 82:93101.Google Scholar
5. Doherty, TJ, Vandervoort, AA, Taylor, AW, Brown, WF. Effects of motor unit losses on strength in older men and women. J Appl Physiol 1993; 74:868874.Google Scholar
6. Roos, MR, Rice, CL, Vandervoort, AA. Age-related changes in motor unit function. Muscle Nerve 1997; 20:679690.Google Scholar
7. Eisen, A, Siejka, S, Schulzer, M, Calne, D. Age-dependent decline in motor evoked potential (MEP) amplitude: with a comment on changes in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 1991; 81:209215.CrossRefGoogle ScholarPubMed
8. Henderson, G, Tomlinson, BE, Gibson, PH. Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci 1980; 46:113136.CrossRefGoogle ScholarPubMed
9. Larsson, L, Karlsson, J. Isometric and dynamic endurance as a function of age and skeletal muscle characteristics. Acta Physiol Scand 1978; 103:129–36.CrossRefGoogle Scholar
10. Narici, MV, Bordini, M, Cerretelli, P Effect of aging on human adductor pollicis muscle function. J Appl Physiol 1991; 71:12771281.Google Scholar
11. Klein, C, Cunningham, DA, Paterson, DH, Taylor, AW. Fatigue and recovery contractile properties of young and elderly men. Eur J Appl Physiol Occup Physiol 1988; 57:684690.CrossRefGoogle Scholar
12. Davies, CTM, Thomas, DO, White, MJ. Mechanical properties of young and elderly human muscle. Acta Med Scand 1986; 711:219226.CrossRefGoogle Scholar
13. Saltin, B, Grimby, G. Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation 1968; 38:11041115.CrossRefGoogle ScholarPubMed
14. Gandevia, SC, Allen, GM, Butler, JE, Taylor, JL. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. J Physiol 1996; 490:529536.Google Scholar
15. Rossini, PM, Barker, AT, Berardelli, A, et al. Noninvasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1994; 91:7992.CrossRefGoogle ScholarPubMed
16. Belanger, M, McComas, AJ. Extent of motor unit activation during effort. J Appl Physiol 1981; 51:11311135.Google Scholar
17. Allen, GM, Gandevia, SC, Mckenzie, DK. Reliability of measurements of muscle strength and voluntary activation using twitch interpolation. Muscle Nerve 1995; 18:593600.CrossRefGoogle ScholarPubMed
18. Kent-Braun, JA, Sharma, KR, Weiner, MW, Miller, RG. Effects of exercise on muscle activation and metabolism in multiple sclerosis. Muscle Nerve 1994; 17:11621169.Google Scholar
19. Mckenzie, DK, Bigland-Ritchie, B, Gorman, R, Gandevia, SC. Central and peripheral fatigue of human diaphragm and limb muscles assessed by twitch interpolation. J Physiol 1992; 454:643656.CrossRefGoogle ScholarPubMed
20. Taylor, JL, Butler, JE, Allen, GM, Gandevia, SC. Changes in motor cortical excitability during human muscle fatigue. J Physiol 1996;490:519528.Google Scholar
21. Hales, JP, Gandevia, SC. Assessment of maximal voluntary contraction with twitch interpolation: an instrument to measure twitch responses. J Neurosci Methods 1988; 25:97102.CrossRefGoogle ScholarPubMed
22. Merton, PA. Voluntary strength and fatigue. J Physiol 1954;123:553564.Google Scholar
23. Bigland-Ritchie, B, Rice, CL, Garland, SJ, Walsh, ML. Task dependent factors in fatigue of human voluntary contractions. Adv Exp Med Biol 1995; 384:361380.CrossRefGoogle ScholarPubMed
24. Enoka, RM, Stuart, DG. Neurobiology of muscle fatigue. J Appl Physiol 1992; 72:16311648.CrossRefGoogle ScholarPubMed
25. Bigland-Ritchie, B, Furbush, F, Woods, JJ. Fatigue of intermittent submaximal voluntary contractions: central and peripheral factors. J Appl Physiol 1986; 61:421429.Google Scholar
26. Chan, KM, Andres, LP, Polykovskaya, Y, Brown, WF. Dissociation of the electrical and contractile properties in single human motor units during fatigue. Muscle Nerve 1998; 21:17861789.Google Scholar
27. Hicks, A, McComas, AJ. Increased sodium pump activity following repetitive stimulation of rat soleus muscles. J Physiol 1989;414:337349.CrossRefGoogle ScholarPubMed
28. De Serres, SJ, Enoka, RM. Older adults can maximally activate the biceps brachii muscle by voluntary command. J Appl Physiol 1998; 84:284291.CrossRefGoogle ScholarPubMed
29. Vandervoort, AA, McComas, AJ. Contractile changes in opposing muscles of the human ankle joint with aging. J Appl Physiol 1986; 61:361367.CrossRefGoogle ScholarPubMed
30. Sharma, KR, Kent-Braun, JA, Majumdar, S, et al. Physiology of fatigue in amyotrophic lateral sclerosis. Neurology 1995; 45:733740.CrossRefGoogle ScholarPubMed
31. Stevens, JC. Aging and spatial acuity of touch. J Gerontol 1992; 47:P35-40.Google Scholar
32. Dorfman, LJ, Bosley, TM. Age-related changes in peripheral and central nerve conduction in man. Neurology 1979; 29:3844.Google Scholar
33. Brooks, VB, Rudomin, P, Slayman, CL. Sensory activation of neurons in the cats’ cerebral cortex. J Neurophysiol 1961; 24:286301.Google Scholar
34. Phillips, CG, Powell, TPS, Wiesendanger, M. Projections from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol 1971; 217:419446.Google Scholar
35. Wolpaw, JR. Electromagnetic muscle stretch strongly excites sensorimotor cortex neurons in behaving primates. Science 1979; 203:465467.Google Scholar
36. Bigland-Ritchie, B, Dawson, NJ, Johannsson, RS. Reflex origin for the slowing of motoneuron firing rates in fatigue of human voluntary contraction. J Physiol 1986; 379:451459.CrossRefGoogle Scholar
37. Gandevia, SC, Macefield, G, Burke, D, Mckenzie, DK. Voluntary activation of human motor axons in the absence of muscle afferent feedback. The control of the deafferented hand. Brain 1990; 113:15631581.Google Scholar
38. Garland, SJ. Role of small diameter afferents in reflex inhibition during human muscle fatigue. J Physiol 1991; 435:547558.Google Scholar
39. Garland, SJ, McComas, AJ. Reflex inhibition of human soleus muscle during fatigue. J Physiol 1990; 429:1727.Google Scholar
40. Macefield, G, Hagbarth, KE, Gorman, R, Gandevia, SC, Burke, D. Decline in spindle support to alpha motoneurons during sustained voluntary contractions. J Physiol 1991; 440:497512.CrossRefGoogle ScholarPubMed
41. Fiatarone, MA, O’Neill, EF, Doyle Ryan, N, et al. Exercise training and nutritional supplementation for physical fraility in very elderly people. New Eng J Med 1994; 330:17691775.CrossRefGoogle Scholar
42. Frontera, WR, Meredith, CN, O’Reilly, KP, Knuttgen, HG, Evans, WJ. Strength conditioning in older men: skeletal muscle hypertrophy and improved function. J Appl Physiol 1988; 64:10381044.Google Scholar
43. Herbert, RD, Dean, C, Gandevia, SC. Effects of real and imagined training on voluntary muscle activation during maximal isometric contractions. Acta Physiol Scand 1998; 163:361368.Google Scholar
44. Yue, G, Cole, KJ. Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. J Neurophysiol 1992; 67:11141123.Google Scholar