Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T20:11:11.407Z Has data issue: false hasContentIssue false

Anomalous Gene Expression in Alzheimer Disease: Cause or Effect

Published online by Cambridge University Press:  18 September 2015

D.R.C. McLachlan*
Affiliation:
Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada M5S 2C2
W.J. Lukiw
Affiliation:
Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada M5S 2C2
C. Mizzen
Affiliation:
Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada M5S 2C2
M.E. Percy
Affiliation:
Department of Genetics, Surrey Place Centre, University of Toronto, Toronto, Canada M5S 2C2
M.J. Somerville
Affiliation:
Department of Genetics, Surrey Place Centre, University of Toronto, Toronto, Canada M5S 2C2
M.K. Sutherland
Affiliation:
Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada M5S 2C2
L. Wong
Affiliation:
Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada M5S 2C2
*
Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada M5S 1A8
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Altered chromatin conformation and increased amounts of aluminum have been observed in the brains of patients with Alzheimer disease. These factors have been shown to affect gene regulation. In this report, we describe how these changes may selectively alter the pool size of the human light chain neurofilament gene and play a fundamental role in the expression of this disease.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1991

References

REFERENCES

1.Glenner, GG, Wong, CW. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Comm 1984; 120: 885890.CrossRefGoogle Scholar
2.Kang, J, Lemaire, HG, Unterbeck, , et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987; 326: 733736.CrossRefGoogle Scholar
3.Esch, FE, Keim, PS, Beattie, EC, et al. Cleavage of amyloid ß peptide during constitutive processing of its precursor. Science 1990; 248: 11221124.CrossRefGoogle Scholar
4.Candy, JM, Klinowski, J, Perry, RH, et al. Aluminosilicates and senile plaque formation in Alzheimer’s disease. Lancet 1986; 1: 354357.CrossRefGoogle ScholarPubMed
5.Edwardson, JA, Candy, JM. Aluminum and the aetiopathogenesis of Alzheimer’s disease. Neurobiol Aging 1990; 11: 314.Google Scholar
6.Selkoe, DJ. Deciphering Alzheimer’s disease: The amyloid precursor protein yields new clues. Science 1990; 248: 10581060.CrossRefGoogle ScholarPubMed
7.Wischik, CM, Novak, M, Bondareff, W, et al. Molecular dissection of Alzheimer Pathology. In: Miyatake, T, Selkoe, DJ, Ihara, Y, eds. Molecular Biology and Genetics of Alzheimer’s Disease, International Congress Series. Amsterdam: Elsevier Science Publishers B.V. 1990; 884: 4756.Google Scholar
8.Iqbal, K, Grundke-Iqbal, I. Cytoskeletal protein pathology in Alzheimer’s disease: Protein phosphorylation and ubiquitination. In: Miyatake, T, Selkoe, DJ, Ihara, Y, eds. Molecular Biology and Genetics of Alzheimer’s Disease, International Congress Series. Amsterdam: Elsevier Science Publishers B.V. 1990; 884: 4756.Google Scholar
9.Kosik, KS. The neuritic dystrophy of Alzheimer’s disease. In: Miyatake, T, Selkoe, DJ, Ihara, , eds. Molecular Biology and Genetics of Alzheimer’s Disease, International Congress Series. Amsterdam: Elsevier Science Publishers B.V. 1990; 884: 3745.Google Scholar
10.Perl, DP, Brody, AR. Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 1980; 208: 297299.CrossRefGoogle ScholarPubMed
11.Perl, DP, Pendlebury, WW. Aluminum accumulation in neurofibrillary tangle-bearing neurons of senile dementia. Alzheimer’s type: Detection by intraneuronal X-ray spectrometry studies of unstained tissue sections. J Neuropathol Exp Neurol 1984; 43: 349.CrossRefGoogle Scholar
12.Crapper, DR, Quittkat, S, De Boni, U. Altered chromatin conformation in Alzheimer’s disease. Brain 1979; 102: 483495.CrossRefGoogle ScholarPubMed
13.McLachlan, DR, Lewis, PN, Lukiw, WJ, et al. Chromatin structure in dementia. Ann Neurol 1984; 15: 329334.CrossRefGoogle ScholarPubMed
14.McLachlan, DR Crapper, Lukiw, WJ, Cho, HJ, et al. Chromatin structure in scrapie and Alzheimer’s disease. Proceedings of the First Canadian Symposium on the Organic Dementias, London, June 1986. Can J Neurol Sci 1986; 13: 427431.CrossRefGoogle Scholar
15.Lukiw, WJ, McLachlan, DRC. Chromatin structure and gene expression in Alzheimer’s disease. Mol Brain Res 1990; 7: 727734.CrossRefGoogle ScholarPubMed
16.Lewis, PN, Lukiw, WJ, De Boni, J, et al. Changes in chromatin structure associated with Alzheimer’s disease. J Neurochem 1981; 37: 11931202.CrossRefGoogle ScholarPubMed
17.Lukiw, WJ, Kruck, TPA, McLachlan, DR Crapper. Alternations in human linker histone-DNA binding in the presence of aluminum salts in vitro and in Alzheimer’s disease. Neurotoxicology 1987; 8: 291302.Google Scholar
18.Lukiw, WJ, Kruck, TPA, McLachlan, DR. Linker histone-DNA complexes: Enhanced stability in the presence of aluminum lactate and implications for Alzheimer’s disease. FEBS Lett 1989; 253: 5962.CrossRefGoogle ScholarPubMed
19.Somerville, MJ, McLachlan, DR, Percy, ME. Localization of the human 68,000 dalton human neurofilament gene (NF68) using a murine cDNA probe. Genome 1988; 30: 499500.CrossRefGoogle Scholar
20.Medvedev, ZA, Medvedev, MN, Robson, L. Tissue specificity and age changes of the pattern of the HI group of histones in chromatin from mouse tissues. Gerontology 1978; 24: 286292.CrossRefGoogle Scholar
21.Pehrson, J, Cole, RD. Histone H1° accumulates in growth inhibited cultured cells. Nature 1980; 285: 4353.CrossRefGoogle ScholarPubMed
22.Roche, J, Gorka, CL, Goeltz, P, Lawrence, JJ. Association of histone H1° with a gene repressed during liver development. Nature 1985; 314: 197198.CrossRefGoogle ScholarPubMed
23.Kretzschmar, HA, Prusiner, SB, Stowring, MS, DeArmond, SJ. Scrapie prion proteins are synthesized in neurons. Am J Pathol 1986; 122: 15.Google ScholarPubMed
24.Kittur, S, Hoh, J, Kawas, C, et al. Neurofilament gene expression in Alzheimer’s disease. Neurobiol Aging 1990; 11: 285286.Google Scholar
25.Clark, AW, Krekoski, CA, Parhad, IM, et al. Altered expression of genes for amyloid and cytoskeletal proteins in Alzheimer cortex. Ann Neurol 1989; 25: 331339.CrossRefGoogle ScholarPubMed
26.Somerville, MJ, Percy, ME, Bergeron, C, et al. Localization and quantitation of 68kDa neurofilament and superoxide dismutase-1 mRNA in Alzheimer brains. Mol Brain Res 1991; 9: 18.CrossRefGoogle Scholar
27.Somerville, MJ, Bergeron, C, Yoong, LKK, et al. Neuronal expression of the light chain neurofilament and superoxide dismutase-1 genes in the temporal lobe of Alzheimer brains. In: Iqbal, K, McLachlan, DRC, Winblad, W, Wisniewski, , eds. Alzheimer’s Disease: Basic Mechanisms, Diagnosis and Therapeutic Strategies. Sussex: John Wiley & Sons Ltd, 1991: 237242.Google Scholar
28.Langstrom, NS, Anderson, JP, Lindroos, HG, et al. Alzheimer’s disease-associated reduction of polysomal mRNA translation. Mol Brain Res 1989; 5: 259269.CrossRefGoogle ScholarPubMed
29.Guillemette, JG, Wong, L, McLachlan, DRC, et al. Characterization of messenger RNA from the cerebral cortex of control and Alzheimer-afflicted brain. J Neurochem 1986;47: 987997.CrossRefGoogle ScholarPubMed
30.Lukiw, WJ, Wong, L, McLachlan, DR. Cytoskeletal messenger RNA stability in human neocortex: studies in normal aging and in Alzheimer’s disease. lnt J Neurosci 1990; 55: 8188.Google ScholarPubMed
31.Heimann, R, Shelanski, ML, Liem, RKH. Microtubule-associated proteins bind specifically to the 70-kDa neurofilament protein. J BiolChem 1985; 260: 1216012166.Google Scholar
32.Barton, AJL, Harrison, PJ, Najlerahim, A, et al. Increased tau messenger RNA in Alzheimer’s disease hippocampus. Am J Pathol 1990; 137: 497502.Google ScholarPubMed
33.Buell, SJ, Coleman, PD. Dendritic growth in the aged human brain and failure of growth in senile dementia. Science 1979; 206: 854856.CrossRefGoogle ScholarPubMed
34.Reuter, F, Giarre, M, Farah, J, et al. Dependence of position-effect variegation in Drosophila on dose of a gene encoding an unusual zinc-finger protein. Nature 1990; 344: 219223.CrossRefGoogle ScholarPubMed
35.Ristiniemi, J, Oikarinen, J. Homology of histone H1 variants with adenine nucleotide-binding proteins. Biochem Biophys Res Comm 1988; 153: 783791.CrossRefGoogle ScholarPubMed
36.Walker, PR, LeBlanc, J, Sikorska, M. Effects of aluminum and other cations on the structure of brain and liver chromatin. Biochemistry 1989; 28: 29112915.CrossRefGoogle ScholarPubMed
37.Parhad, IM, Krekoski, CA, Mathew, A, Tran, PM. Neuronal gene expression in aluminum myelopathy. Cell and Mol Neurobiol 1989; 9: 123138.CrossRefGoogle ScholarPubMed
38.Goldstein, ME, Weiss, SR, Lazzarini, RA, et al. mRNA levels of all three neurofilament proteins decline following nerve transection. Mol Brain Res 1988; 3: 287292.CrossRefGoogle Scholar
39.Rosenfeld, J, Dorman, ME, Griffin, JW, et al. Distribution of neurofilament antigens after axonal injury. J Neuropathol Exp Neurol 1987; 46: 269282.CrossRefGoogle ScholarPubMed
40.Schlaepfer, WW, Bruce, J (1990); Simultaneous up-regulation of neurofilament proteins during the postnatal development of the rat nervous system. J Neurosci Res 25: 3949.CrossRefGoogle ScholarPubMed