Hostname: page-component-84b7d79bbc-5lx2p Total loading time: 0 Render date: 2024-07-26T20:07:01.341Z Has data issue: false hasContentIssue false

Effect of Asparagine, Glutamine and Insulin on Cerebral Amino Acid Neurotransmitters

Published online by Cambridge University Press:  18 September 2015

Roger F. Butterworth
Affiliation:
Clinical Research Institute of Montreal
France Landreville
Affiliation:
Clinical Research Institute of Montreal
Edith Hamel
Affiliation:
Clinical Research Institute of Montreal
Andrea Merkel
Affiliation:
Clinical Research Institute of Montreal
François Giguere
Affiliation:
Clinical Research Institute of Montreal
André Barbeau*
Affiliation:
Clinical Research Institute of Montreal
*
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada, H2W 1R7
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Treatment of rats with asparagine or glutamine caused substantial increases in glutamine concentrations in cerebellum and medulla oblongata. Insulin treatment caused a diminution of glutamate and GA BA in these regions of brain. Since it is now well-established that glutamine is a very efficient precursor of the neurotransmitter pool of glutamate in mammalian brain, treatment with asparagine or glutamine could be of therapeutic (replacement) value in the treatment of neurological disorders such as Friedreich's ataxia, in which cerebral glutamate concentrations have been found to be diminished.

Type
Quebec Cooperative Study on Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1980

References

REFERENCES

Barbeau, A., Butterworth, R.F., Ngo, T., Breton, G., Melançon, S., Shapcott, D., Geoffroy, G. and Lemieux, B. (1976). Pyruvate metabolism in Friedreich’s ataxia. Can. J. Neurol. Sci., 3, 379388.CrossRefGoogle ScholarPubMed
Blass, J.P., Avigan, J. and Uhlendorf, B.W. (1970). A defect in pyruvate decarboxylase in a child with an intermittent movement disorder. J. Clin. Invest., 49, 423432.CrossRefGoogle Scholar
Butterworth, R.F., Hamel, E., Lan-Dreville, F. and Barbeau, A. (1978). Cerebellar ataxia produced by 3-acetyl pyridine in rat. Can. J. Neurol. Sci., 5, 131133.CrossRefGoogle ScholarPubMed
Filla, A., Butterworth, R.F., Geoffroy, G., Lemieux, B. and Barbeau, A. (1978). Serum and platelet lipoamide dehydrogenase in Friedreich’s ataxia. Can. J. Neurol. Sci., 5, 111114.CrossRefGoogle ScholarPubMed
Guidotti, A., Biggio, G. and Costa, E. (1975). 3-acetyl pyridine: a tool to inhibit the tremor and the increase of cGMP content in cerebellar cortex elicited by harmaline. Brain Res., 96, 201205.CrossRefGoogle Scholar
Hamberger, A.C., Chiang, G.H., Nylen, E.S., Scheff, S.W. and Cotman, C.W. (1979). Glutamate as a CNS transmitter. 1. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate. Brain Res., 168,513530.CrossRefGoogle Scholar
Hawkins, R.A. and Biebuyck, (1979). Ketone bodies are selectively used by individual brain regions. Science, 205, 325327.CrossRefGoogle ScholarPubMed
Huxtable, R., Azari, J., Reisine, T., Johnson, P., Yamamura, H. and Barbeau, A. (1979). Regional distribution of amino acids in Friedreich’s ataxia brains. Can. J. Neurol. Sci., 6, 255258.CrossRefGoogle ScholarPubMed
Liebschutz, J., Airoldi, L., Brown-Stein, M.J., Chinn, N.G. and Wurtman, R.J. (1977). Regional distribution of endogenous and parenteral glutamate, aspartate and glutamine in rat brain. Biochem. Pharmacol., 26, 443446.CrossRefGoogle ScholarPubMed
Lonsdale, D., Faulkner, W.R., Price, J.W. and Smeby, R.R. (1969). Intermittent cerebellar ataxia associated with hyper-pyruvic acidemia, hyperalaninemia and hyperalanimuria. Pediatr., 43, 10251034.CrossRefGoogle Scholar
McBride, W.J.Aprison, M.H. and Kusano, K. (1976). Contents of several amino acids in the cerebellum, brain stem and cerebrum of the ‘staggerer’, ‘weaver’ and ‘nervous’ neurologically mutant mice. J. Neurochem., 26, 867870.CrossRefGoogle ScholarPubMed
Melançon, S.B., Potier, M., Dallaire, L., Fontaine, G., Grenier, G., Lemieux, B., Geoffroy, G. and Barbeau, A.. (1978). Lipoamide dehydrogenase in Friedreich’s ataxia Fibroblasts. Can. J. Neurol. Sci., 5, 115118.CrossRefGoogle ScholarPubMed
Oldendorf, W.H. and Szabo, J. (1976). Amino acid assignment to one of three blood-brain barrier amino acid carriers. Am. J. Physiol., 230, 9498.CrossRefGoogle ScholarPubMed
Perry, T.L., Currier, R.D., Hansen, S. and Maclean, J. (1977). Aspartate-taurine imbalance in dominantly inherited olivopon-to-cerebellar atrophy. Neurology, 27, 257261.CrossRefGoogle ScholarPubMed
Rodriguez-Budelli, M. and Kark, R.A.P. (1978). Kinetic evidence for a structural abnormality of lipoamide dehydrogenase in two patients with Friedreich’s ataxia. Neurology, 28, 12831286.CrossRefGoogle Scholar
Roffler-Tarlov, S. and Sidman, R.L. (1978). Concentrations of glutamic acid in cerebellar cortex and deep nuclei of normal mice and weaver, staggerer and nervous mutants. Brain Res., 142, 269283.CrossRefGoogle ScholarPubMed
Schwerin, P., Bessman, S.P. and Waelsch, H. (1950). The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J. Biol. Chem., 184, 3744.CrossRefGoogle ScholarPubMed
Shank, R.P. and Aprison, M.H. (1979). Biochemical aspects of the neurotransmitter function of glutamate in “glutamic Acid: Advances in biochemistry and physiology”, Ed. Filer, L.J. Jr., S., Garattini, Kare, M.R., Reynolds, W.A. and Wurtman, R.J.. p. 139. Raven Press.Google Scholar
Shapcott, D., Melançon, S., Butterworth, R.F., Khoury, K., Collu, R., Breton, G., Geoffroy, G., Lemieux, B. and Barbeau, A. (1976). Glucose and insulin metabolism in Friedreich’s ataxia. Can. J. Neurol. Sci., 3, 361364.CrossRefGoogle ScholarPubMed
Stumpf, D.A. and Parks, J.K. (1979). Friedreich’s ataxia II. Normal kinetics of lipoamide dehydrogenase. Neurol., 29, 820826.CrossRefGoogle ScholarPubMed
Tews, J.K., Carter, S.H. and Stone, W.E. (1965). Chemical changes in the brain during insulin hypoglycaemia and recovery. J. Neurochem., 12, 679693.CrossRefGoogle ScholarPubMed
Thoren, C. (1962). Diabetes Mellitus in Friedreich’s Ataxia. Acta. Paediat., 51, suppl. 135, 239247.CrossRefGoogle Scholar
Wick, H., Schweizer, K. and Baumgartner, R. (1977). Thiamine dependency in a patient with congenital lacticacidaemia due to pyruvate dehydrogenase deficiency. Agents and actions, 7, 405410.CrossRefGoogle Scholar