Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-04T02:17:37.540Z Has data issue: false hasContentIssue false

Friedreich's Ataxia 1978 — An Overview

Published online by Cambridge University Press:  18 September 2015

A. Barbeau*
Affiliation:
Clinical Research Institute of Montreal and the Université de Montréal
*
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada, H2W 1R7
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the present overview an attempt is made to summarize the investigations carried out during the first part of Phase Two of the Quebec Cooperative Study of Friedreich's Ataxia. These investigations delineated the relative importance of various biochemical leads uncovered during the preliminary survey. It is possible to indicate some findings that may be primary and which should be pursued in subsequent investigations. Among these, the observation of an abnormal composition of high density lipoproteins in Friedreich's Ataxia appears to be the most important.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1978

References

REFERENCES

Aggerbeck, L.P., McMahon, J.P. and Scanu, A. M. (1974). Hypobetalipo-proteinemia: Clinical and biochemical description of a new kindred with Friedreich’s ataxia. Neurology, 24, 10511063.Google Scholar
Barbeau, A., Breton, G., Lemieux, B. and Butterworth, R.F. (1976a). Bilirubin metabolism in Friedreich’s ataxia — Preliminary investigation. Can. J. Neurol. Sci., 3, 365372.Google Scholar
Barbeau, A., Butterworth, R. F., Ngo, T., Breton, G., Melancon, S., Shapcott, D., Geoffroy, G. and Lemieux, B. (1976b). Pyruvate metabolism in Friedreich’s ataxia. Can. J. Neurol. Sci., 3, 379388.Google Scholar
Blass, J.P., Avignan, J. and ühlenDorf, B.S. (1970). A defect in pyruvate decarboxylase in a child with an intermittent movement disorder. J. Clin. Invest., 49, 423432.Google Scholar
Blass, J.P., Kark, R.A.P. and Menon, N.K. (1976). Low activities of the pyruvate and oxoglutarate dehydrogenase complexes in five patients with Friedreich’s ataxia. New Engl. J. Med., 295, 6267.Google Scholar
Bureau, M.A., Ngassam, P. Lemieux, B. and Trias, A. (1976). Pulmonary function studies in Friedreich’s ataxia. Can. J. Neurol. Sci., 3, 343348.CrossRefGoogle ScholarPubMed
Butterworth, R.F., Izumi, K., Landre Ville, F. and Barbeau, A. (1977). Dosage de la pyruvate déshydrogénase musculaire dans deux modèles expérimentaux d’ataxie. Union Med. Can., 106, 468471.Google Scholar
Butterworth, R. F., Shapcott, D., Melancon, S., Breton, G., Geoffroy, G., Lemieux, B. and Barbeau, A. (1976). Clinical laboratory findings in Friedreich’s Ataxia. Can. J. Neurol. Sci., 3, 355360.Google Scholar
Cooper, R.A., Arner, E.C, Wiley, J.S. and Shattil, S.J. (1975). Modification of red cell membrane structure by cholesterol-rich lipid dispersions. J. Clin. Invest., 55, 115126.Google Scholar
Cote, M., Davignon, A., Elias, G., Solignac, A., Geoffroy, G., Lemieux, B. and Barbeau, A. (1976). Hemodynamic findings in Friedreich’s ataxia. Can. J. Neurol. Sci., 3, 333336.Google Scholar
Gibson, G. E., Jope, R. and Blass, J.P. (1975). Decreased synthesis of acetyl choline accompanying impaired oxidation of pyruvic acid in rat brain minces. Biochem. J., 148, 1723.Google Scholar
Gillespie, F.D. (1965). Aniridia, cerebellar ataxia and oligophenia in siblings. Arch. Ophthal., 73, 338341.Google Scholar
Goldman, H. and Scriver, C.R. (1967). A transport system in mammalian kidney with preference for ? β-amino compounds. Pediat. Res., 1, 212213.Google Scholar
Huxtable, R. and Bressler, R. (1974). Taurine concentrations in congestive heart failure. Science, 184, 11871188.Google Scholar
Izumi, K., Butterworth, R.F. and Barbeau, A. (1977). Effects of taurine on calcium binding to microsomes isolated from rat cerebral cortex. Life Sci., 20, 943950.Google Scholar
Jackson, J.F., Currier, R. D., Terasaki, P.I. and Morton, N.E. (1977). Spinocerebellar ataxia and HLA linkage. New Engl. J. Med., 296, 11381141.Google Scholar
Jasmin, G., Solymoss, B. and Eu, H.Y. (1975). Effect of thyroparathyroidec-tomy and of a low calcium diet on the cardiomyopathy of the Syrian hamster. In: The Metabolism of Contraction, University Park Press, Baltimore (edited by Roy, P.E. and Rona, G.), pp. 717729.Google Scholar
Kark, R.A.P., Blass, J. P. and Engel, W. K. (1974). Pyruvate oxidation in neuromuscular diseases — Evidence of a genetic defect in two families with the clinical syndrome of Friedreich’s ataxia. Neurology, 24, 964971.Google Scholar
Kark, R.A.P., Blass, J.P. and Spence, M.A. (1977). Physostigmine in familial ataxias. Neurology, 27, 7072.Google Scholar
Lemieux, B., Barbeau, A., Beroniade, V., Shapcott, D., Breton, G., Geoffroy, G. and Melancon, S. (1976). Amino acid metabolism in Friedreich’s ataxia. Can. J. Neurol. Sci., 3, 373378.Google Scholar
Mars, H., Lewis, L.A., Robertson, A.L., Butkus, A. and Williams, G.H. (1969). Familial hypo-β3-lipo-proteinemia — a genetic disorder of lipid metabolism with nervous system involvement. Am. J. Med., 46, 886900.Google Scholar
Robinson, N. (1968). Chemical changes in the spinal cord in Friedreich’s ataxia and motor neurone disease. J. Neurol. Neurosurg. Psychiatr. 31, 330333.CrossRefGoogle ScholarPubMed
Sanchez-Casis, G., Cote, M. and Barbeau, A. (1976). Pathology of the heart in Friedreich’s ataxia: Review of the literature and report of one case. Can. J. Neurol. Sci., 3, 349354.Google Scholar
Sjogren, T. (1947). Hereditary congenital spinocerebellar ataxia combined with congenital cataract and oligophrenia. Acta Psychiat. Scand., Suppl.46, 286289.CrossRefGoogle Scholar