Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T15:04:02.722Z Has data issue: false hasContentIssue false

Hereditary Ataxia, Spastic Paraparesis and Neuropathy in the French-Canadian Population

Published online by Cambridge University Press:  02 December 2014

Nicolas Dupré*
Affiliation:
Department of Neurological Sciences, CHAUQ-Enfant-Jésus, Quebec City, QC
Jean-Pierre Bouchard
Affiliation:
Department of Neurological Sciences, CHAUQ-Enfant-Jésus, Quebec City, QC
Bernard Brais
Affiliation:
Center for the Study of Brain Diseases, CHUM Research Center, Notre Dame Hospital, Montreal, QC, Canada
Guy A. Rouleau
Affiliation:
Center for the Study of Brain Diseases, CHUM Research Center, Notre Dame Hospital, Montreal, QC, Canada
*
Faculty of Medicine, Laval University, Department of Neurological Sciences, CHAUQ-Enfant-Jésus, 1401, 18th Street, Quebec City, Quebec, G1J 1Z4, Canada.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Historical events have shaped the various regional gene pools of the French-Canadian (FC) population, leading to increased prevalence of some rare diseases. The first studies of these founder effects were performed in large part by astute clinicians such as André Barbeau. In collaboration with others, he contributed greatly to the delineation of phenotypic subtypes of these conditions. As such, the following neurogenetic disorders were first identified in patients of FC origin: AOA2, ARSACS, HSAN2, RAB, and HMSN/ACC. We have summarized our current knowledge of the main hereditary ataxias, spastic parapareses and neuropathies that are particular to the FC population. The initial genetic characterization of the more common and homogeneous of these diseases has been largely completed. We predict that the regional populations of Canada will allow the identification of new rare forms of hereditary ataxias, spastic parapareses and neuropathies, and contribute to the unravelling of the genetic basis of these entities.

Résumé:

RÉSUMÉ:

Des événements historiques ont façonné les différents pools géniques de la population canadienne-française (CF) entraînant une augmentation de la prévalence de certaines maladies rares. Les premières études de ces effets fondateurs ont été effectuées surtout grâce à des cliniciens perspicaces tel André Barbeau. Avec des collaborateurs, il a contribué de façon importante à la description de sous-types phénotypiques de ces maladies. Parmi ces maladies neurogénétiques, citons l’AOA2, l’ARSACS, l’HSAN2, le RAB et l’HMSN/ACC qui ont été décrites pour la première fois chez des patients canadiens-français. Nous résumons les connaissances actuelles sur les principales ataxies héréditaires, les paraparésies spastiques et les neuropathies qui sont particulières à la population canadiennefrançaise. La caractérisation génétique des maladies qui sont plus fréquentes et plus homogènes est en grande partie complétée. Nous prévoyons que les populations régionales du Canada permettront d’identifier de nouvelles forms rares d’ataxies héréditaires, de paraparésies spastiques et de neuropathies et contribueront à élucider le fondement génétique de ces maladies.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Bouchard, G, De Braekeleer, M. Histoire d’un génôme. Québec: Presses de l’Université du Québec, 1991:607.Google Scholar
2. Theriault, R. L’Acadie 1604-2004. Cap-aux-diamants: la revue d’histoire du Québec. 2004;77:104.Google Scholar
3. Barbeau, A. Distribution of Ataxia in Quebec. In: Sobue, I, editor. Spinocerebellar degenerations. Tokyo: Japanese Medical Research Foundation; 1978. p.12142.Google Scholar
4. Harding, AE. Friedreich’s ataxia: a clinical and genetic study of 90 families with an analysis of early diagnostic criteria and intrafamilial clustering of clinical features. Brain. 1981;104:589620.Google Scholar
5. Alper, G, Narayanan, V. Friedreich’s ataxia. Pediatr Neurol. 2003;28:33541.CrossRefGoogle ScholarPubMed
6. Bouchard, JP, Barbeau, A, Bouchard, R, Paquet, M, Bouchard, RW, et al. A cluster of Friedreich’s ataxia in Rimouski, Quebec. Can J Neurol Sci. 1979;6:2058.Google Scholar
7. Barbeau, A, Sadibelouiz, M, Roy, M, Lemieux, B, Bouchard, JP, Geoffroy, G, et al. Origin of Friedreich’s disease in Quebec. Can J Neurol Sci. 1984;11:5069.Google Scholar
8. Chamberlain, S, Shaw, J, Wallis, J, Rowland, A, Chow, L, Farrall, M, et al. Genetic homogeneity at the Friedreich ataxia locus on chromosome 9. Am J Hum Genet. 1989;44:51821.Google Scholar
9. Barbeau, A, Roy, M, Sadibelouiz, M, Wilensky, MA. Recessive ataxia in Acadians and “Cajuns”. Can J Neurol Sci. 1984;11:52633.Google Scholar
10. Keats, BJ, Ward, LJ, Shaw, J, Wickremasinghe, A, Chamberlain, S. “Acadian” and “classical” forms of Friedreich ataxia are most probably caused by mutations at the same locus. Am J Med Genet. 1989;33:2668.Google Scholar
11. Sirugo, G, Duclos, F, Fujita, R, Keats, JB, Pandolfo, M, Mandel, JL, et al. Mapping the Friedreich ataxia locus (FRDA) by linkage disequilibrium analysis with highly polymorphic microsatellites. Biomed Pharmacother. 1994; 48:21924.Google Scholar
12. Richter, A, Poirier, J, Mercier, J, Julien, D, Morgan, K, Roy, M, et al. Friedriech ataxia in Acadian families from Easter Canada: Clinical diversity with conservered haplotypes. Am J Med Genet. 1996;64:594601.Google Scholar
13. Sirugo, G, Keats, B, Fujita, R, Duclos, F, Purohit, K, Koenig, M, et al. Friedreich ataxia in Louisiana Acadians: demonstration of a founder effect by analysis of microsatellite-generated extended haplotypes. Am J Hum Genet. 1992;50:55966.Google ScholarPubMed
14. Campuzano, V, Montermini, L, Molto, M, Pianese, L, Cossee, M, Cavalcanti, F, et al. Friedriech ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science. 1996;271:14237.CrossRefGoogle Scholar
15. Durr, A, Cossee, M, Agid, Y, Campuzano, V, Mignard, C, Penet, C, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med. 1996; 335:116975.Google Scholar
16. Montermini, L, Richter, A, Morgan, K, Justice, CM, Julien, D, Castellotti, B, et al. Phenotypic variability in Friedreich ataxia: role of the associated GAA triplet repeat expansion. Ann Neurol. 1997;41:67582.Google Scholar
17. Voncken, M, Ioannou, P, Delatycki, MB. Friedreich ataxia-update on pathogenesis and possible therapies. Neurogenetics. 2004;5:18.Google Scholar
18. Moreira, MC, Klur, S, Watanabe, M, Nemeth, AH, LeBer, I, Moniz, JC, et al. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet. 2004;36:2257.CrossRefGoogle ScholarPubMed
19. Le Ber, I, Bouslam, N, Rivaud-Pechoux, S, Guimaraes, J, Benomar, A, Chamayou, C, et al. Frequency and phenotypic spectrum of ataxia with oculomotor apraxia 2: a clinical and genetic study in 18 patients. Brain. 2004;127:75967.CrossRefGoogle ScholarPubMed
20. Bouchard, J, Bedard, P, Bouchard, R. Study of a family with progressive ataxia, tremor and severe distal amyotrophy. Can J Neurol Sci. 1980;7:3459.CrossRefGoogle ScholarPubMed
21. Duquette, A, Roddier, K, McNabb-Baltar, J, Gosselin, I, St-Denis, A, Dicaire, MJ, et al. Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy. Ann Neurol. 2005;57:40814.Google Scholar
22. Nemeth, AH, Bochukova, E, Dunne, E, Huson, SM, Elston, J, Hannan, MA, et al. Autosomal recessive cerebellar ataxia with oculomotor apraxia (ataxia-telangiectasia-like syndrome) is linked to chromosome 9q34. Am J Hum Genet. 2000;67:13206.Google Scholar
23. Bouchard, JP, Richter, A, Mathieu, J, Brunet, D, Hudson, TJ, Morgan, K, et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Neuromuscul Disord. 1998;8:4749.Google Scholar
24. Peyronnard, JM, Charron, L, Barbeau, A. The neuropathy of Charlevoix-Saguenay ataxia: an electrophysiological and pathological study. Can J Neurol Sci. 1979;6:199203.Google Scholar
25. Bouchard, JP, Barbeau, A, Bouchard, R, Bouchard, RW. Autosomal recessive spastic ataxia of Charlevoix-Saguenay. Can J Neurol Sci. 1978;5:619.Google Scholar
26. De Braekeleer, M, Giasson, F, Mathieu, J, Roy, M, Bouchard, JP, Morgan, K, et al. Genetic epidemiology of autosomal recessive spastic ataxia of Charlevoix-Saguenay in northeastern Quebec. Genet Epidemiol. 1993;10:1725.Google Scholar
27. Hara, K, Onodera, O, Endo, M, Kondo, H, Shiota, H, Miki, K, et al. Sacsin-related autosomal recessive ataxia without prominent retinal myelinated fibers in Japan. Mov Disord. 2005;20:3802.Google Scholar
28. Richter, AM, Ozgul, RK, Poisson, VC, Topaloglu, H. Private SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) families from Turkey. Neurogenetics. 2004;5:165170.Google Scholar
29. Gucuyener, K, Ozgul, K, Paternotte, C, Erdem, H, Prud’homme, JF, Ozguc, M, et al. Autosomal recessive spastic ataxia of Charlevoix-Saguenay in two unrelated Turkish families. Neuropediatrics. 2001;32:1426.Google Scholar
30. El Euch-Fayache, G, Lalani, I, Amouri, R, Turki, I, Ouahchi, K, Hung, WY, et al. Phenotypic features and genetic findings in sacsin-related autosomal recessive ataxia in Tunisia. Arch Neurol. 2003;60:9828.Google Scholar
31. Mrissa, N, Belal, S, Hamida, CB, Amouri, R, Turki, I, Mrissa, R, et al. Linkage to chromosome 13q11-12 of an autosomal recessive cerebellar ataxia in a Tunisian family. Neurology. 2000;54:140814.CrossRefGoogle Scholar
32. Grieco, GS, Malandrini, A, Comanducci, G, Leuzzi, V, Valoppi, M, Tessa, A, et al. Novel SACS mutations in autosomal recessive spastic ataxia of Charlevoix-Saguenay type. Neurology. 2004;62:1036.Google Scholar
33. Criscuolo, C, Banfi, S, Orio, M, Gasparini, P, Monticelli, A, Scarano, V, et al. A novel mutation in SACS gene in a family from southern Italy. Neurology. 2004;62:1002.CrossRefGoogle Scholar
34. Lamy, C, Melançon, S, Taussig, D, Richter, A, Bouchard, JP, Mas, JL, et al. Ataxie spastique récessive de type Charlevoix-Saguenay dans une famille marocaine. Revue Neurologique. 1998;154:463.Google Scholar
35. Richter, A, Rioux, JD, Bouchard, JP, Mercier, J, Mathieu, J, Ge, B, et al. Location score and haplotype analyses of the locus for autosomal recessive spastic ataxia of Charlevoix-Saguenay, in chromosome region 13q11. Am J Hum Genet. 1999;64:76875.Google Scholar
36. Engert, JC, Berube, P, Mercier, J, Dore, C, Lepage, P, Ge, B, et al. ARSACS, a spastic ataxia common in northeastern Quebec, is caused by mutations in a new gene encoding an 11.5-kb ORF. Nat Genet. 2000;24:1205.Google Scholar
37. Mercier, J, Prevost, C, Engert, JC, Bouchard, JP, Mathieu, J, Richter, A. Rapid detection of the sacsin mutations causing autosomal recessive spastic ataxia of Charlevoix-Saguenay. Genet Test. 2001;5:2559.Google Scholar
38. Bouchard, JP. Recessive spastic ataxia of Charlevoix-Saguenay. In: de Jonghe, JMBV,editor. Hereditary neuropathies and spinocerebellar atrophies. Vol. 16 (60). Amsterdam: Elsevier Science Publisher; 1991. p.4519.Google Scholar
39. Dupré, N, Bouchard, JP, Verreault, S, Rivest, D, Puymirat, J, Rouleau, G. Recessive ataxia of the Beauce, a new form of hereditary ataxia of pure cerebellar type. Neurology. 2002;58:A35.Google Scholar
40. Lopes-Cendes, I, Andermann, E, Attig, E, Cendes, F, Bosch, S, Wagner, M, et al. Confirmation of the SCA-2 locus as an alternative locus for dominantly inherited spinocerebellar ataxias and refinement of the candidate region. Am J Hum Genet. 1994;54:77481.Google Scholar
41. Meijer, IA, Hand, CK, Cossette, P, Figlewicz, DA, Rouleau, GA. Spectrum of SPG4 mutations in a large collection of North American families with hereditary spastic paraplegia. Arch Neurol. 2002;59:2816.Google Scholar
42. Hazan, J, Lamy, C, Melki, J, Munnich, A, de Recondo, J, Weissenback, J. Autosomal dominant familial spastic paraplegia is genetically heterogeneous and one locus maps to chromosome 14q. Nat Genet. 1993;5:1637.Google Scholar
43. Reid, E, Grayson, C, Rubinsztein, DC, eRogers, MT, Rubinsztein, JS. Subclinical cognitive impairment in autosomal dominant “pure” hereditary spastic paraplegia. J Med Genet. 1999;36:7978.Google Scholar
44. Hentati, A, Pericak-Vance, MA, Lennon, F, Wasserman, B, Hentati, F, Juneja, T, et al. Linkage of a locus for autosomal dominant familial spastic paraplegia to chromosome 2p markers. Hum Mol Genet. 1994;3:186771.Google Scholar
45. Nielsen, JE, Koefoed, P, Abell, K, Hasholt, L, Eiberg, H, Fenger, K, et al. CAG repeat expansion in autosomal dominant pure spastic paraplegia linked to chromosome 2p21-p24. Hum Mol Genet. 1997;6:18116.Google Scholar
46. Errico, A, Ballabio, A, Rugarli, EI. Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics. Hum Mol Genet. 2002;11:15363.Google Scholar
47. Simoes Lopes, A, Verreault, S, Bouchard, JP, Rouleau, GA. Further evidence of linkage between adult-onset autosomal dominant leukodystrophy and chromosome 5q23. Am J Hum Genet. 2002;73:471.Google Scholar
48. Verreault, S, Langlois, M, Thibault, M, Bouchard, JP, Simoes Lopes, A, Rouleau, GA. A kindred of hereditary adult-onset autosomal dominant leukodystrophy in Charlevoix, Quebec. Can J Neurol Sci. 2002;29:S57.Google Scholar
49. Brown, RT, Polinsky, RJ, Schwankhaus, J, Eldridge, R, McFarland, H, Schesinger, S, et al. Adrenergic dysfunction in hereditary adult-onset leukodystrophy. Neurology. 1987;37:14214.Google Scholar
50. Eldridge, R, Anayiotos, CP, Schlesinger, S, Cowan, D, Bever, C, Patronas, N, et al. Hereditary adult-onset leukodystrophy simulating chronic progressive multiple sclerosis. N Engl J Med. 1984;311:94853.Google Scholar
51. Dionne, A, Brunet, D, MacCampbell, A, Dupre, N. Adreno-myeloneuropathy: report of a new mutation in the ABCD1 gene in a French-Canadian. Can J Neurol Sci. 2005;32:2613.Google Scholar
52. Meijer, IA, Cossette, P, Roussel, J, Benard, M, Toupin, S, Rouleau, GA, et al. A novel locus for pure recessive hereditary spastic paraplegia maps to 10q22.1-10q24.1. Ann Neurol. 2004;56:57982.CrossRefGoogle Scholar
53. Dupre, N, Howard, HC, Mathieu, J, Karpati, G, Vanasse, M, Bouchard, JP, et al. Hereditary motor and sensory neuropathy with agenesis of the corpus callosum. Ann Neurol. 2003;54:918.Google Scholar
54. Filteau, M, Pourche, E, Bouchard, R, Baruch, P, Mathieu, J, Bedard, F, et al. Corpus callosum agenesis and psychosis in Andermann syndrome. Arch Neurol. 1991;48:127580.Google Scholar
55. De Braekeleer, M, Dallaire, A, Mathieu, J. Genetic epidemiology of sensorimotor polyneuropathy with or without agenesis of the corpus callosum in northeastern Quebec. Hum Genet. 1993;91:2237.Google Scholar
56. Battistella, P, Drigo, P, Laverda, A, Casara, G, De Martin, P, Condini, A, et al. The Andermann syndrome. Progressive neuropathy, mental retardation with agenesis of the corpus callosum. Ital J Pediatrics. 1987;13:2002.Google Scholar
57. Howard, H, Mount, D, Rochefort, D, Dupre, N, Prevost, C, Welch, R, et al. Mutations in the K-Cl cotransporter KCC3 cause a severe peripheral neuropathy associated with agenesis of the corpus callosum. Nat Genet. 2002;32:38492.Google Scholar
58. Hauser, E, Bittner, P, Liegl, C, Bernert, G, Zeitlofer, J. Occurrence of Andermann Syndrome out of French Canada - agenesis of the corpus callosum with neuronopathy. Neuropediatrics. 1993; 24:10710.Google Scholar
59. Deleu, D, Bamanikar, S, Muirhead, D, Louon, A. Familial progressive sensorimotor neuropathy with agenesis of the corpus callosum (Andermann Syndrome): A clinical, neuroradiological and histopathological study. Eur Neurol. 1997;37:1049.Google Scholar
60. Race, J, Makhlouf, F, Logue, P Wilson, F, Dunham, P, Holtzman, E. Molecular cloning and functional characterization of KCC3, a new K-Cl cotransporter. Am J Physiol. 1999;277:C1210C1219.Google Scholar
61. Newman, NJ. Leber’s hereditary optic neuropathy. New genetic considerations. Arch Neurol. 1993;50:5408.Google Scholar
62. Nikoskelainen, E, Wanne, O, Dahl, M. Pre-excitation syndrome and Leber’s hereditary optic neuroretinopathy. Lancet. 1985;1:696.Google Scholar
63. Newman, NJ, Lott, MT, Wallace, DC. The clinical characteristics of pedigrees of Leber’s hereditary optic neuropathy with the 11778 mutation. Am J Ophthalmol. 1991;111:75062.Google Scholar
64. Gropman, A, Chen, TJ, Perng, CL, Krasnewich, D, Cherfnoff, E, Tifft, C, et al. Variable clinical manifestation of homoplasmic G14459A mitochondrial DNA mutation. Am J Med Genet. 2004;124A:37782.CrossRefGoogle ScholarPubMed
65. Macmillan, C, Kirkham, T, Fu, K, Allison, V, Andermann, E, Chitayat, D, et al. Pedigree analysis of French Canadian families with T14484C Leber’s hereditary optic neuropathy. Neurology. 1998;50:41722.Google Scholar
66. Macmillan, C, Johns, TA, Fu, K, Shoubridge, EA. Predominance of the T14484C mutation in French-Canadian families with Leber hereditary optic neuropathy is due to a founder effect. Am J Hum Genet. 2000;66:3325.Google Scholar
67. Laberge, AM, Jomphe, M, Houde, L, Vezina, H, Tremblay, M, Desjardins, B, et al. A “Fille du Roy” introduced the T14484C Leber Hereditary Optic Neuropathy Mutation in French Canadians. Am J Hum Genet. 2005;77.Google Scholar
68. Larsson, NG, Andersen, O, Holme, E, Oldfors, A, Wahlstrom, J. Leber’s hereditary optic neuropathy and complex I deficiency in muscle. Ann Neurol. 1991;30:7018.Google Scholar
69. Wong, A, Cavelier, L, Collins-Schramm, HE, Seldin, MF, McGrogan, M, Savontaus, ML, et al. Differentiation-specific effects of LHON mutations introduced into neuronal NT2 cells. Hum Mol Genet. 2002;11:4318.CrossRefGoogle ScholarPubMed
70. Hould, F, Verret, S. Hereditary radicular neuropathy with sensory loss: study of a French-Canadian family. Laval Med. 1967;38:4549.Google Scholar
71. Roddier, K, Thomas, T, Marleau, G, Gagnon, AM, Dicaire, MJ, St-Denis, A, et al. Two mutations in the HSN2 gene explain the high prevalence of HSAN2 in French Canadians. Neurology. 2005;64:17627.Google Scholar
72. Ohta, M, Ellefson, RD, Lambert, EH, Dyck, PJ. Hereditary sensory neuropathy, type II. Clinical, electrophysiologic, histologic, and biochemical studies of a Quebec kinship. Arch Neurol. 1973;29:2337.Google Scholar
73. Lafreniere, RG, MacDonald, ML, Dube, MP, MacFarlane, J, O’Driscoll, M, Brais, B, et al. Identification of a novel gene (HSN2) causing hereditary sensory and autonomic neuropathy type II through the study of Canadian genetic isolates. Am J Hum Genet. 2004;74:106473.Google Scholar
74. Timmerman, V, Nelis, E, De Jonghe, P, Martin, JJ, Van Broeckhoven, C. Hereditary neuropathies. In: Emery, AEH, editor. Neuromuscular disorders:clinical and molecular genetics. West Sussex: John Wiley & Sons Ltd; 1998. p.487511.Google Scholar
75. Dupre, N, Bouchard, JP, Cossette, L, Brunet, D, Vanasse, M, Lemieux, B, et al. Clinical and electrophysiological study in French-Canadian population with Charcot-Marie-tooth disease type 1A associated with 17p11.2 duplication. Can J Neurol Sci. 1999;26:196200.Google Scholar
76. Dupre, N, Cossette, L, Hand, CK, Bouchard, JP, Rouleau, GA, Puymirat, J. A founder mutation in French-Canadian families with X-linked hereditary neuropathy. Can J Neurol Sci. 2001;28:515.Google Scholar
77. Patel, PI, Franco, B, Garcia, C, Slaugenhaupt, SA, Nakamura, Y, Ledbetter, DH, et al. Genetic mapping of autosomal dominant Charcot-Marie-Tooth disease in a large French-Acadian kindred: identification of new linked markers on chromosome 17. Am J Hum Genet. 1990;46:8019.Google Scholar
78. Berger, P, Young, P, Suter, U. Molecular cell biology of Charcot-Marie-Tooth disease. Neurogenetics. 2002;4:115.Google Scholar
79. Simard, LR, Rochette, C, Semionov, A, Morgan, K, Vanasse, M. SMN(T) and NAIP mutations in Canadian families with spinal muscular atrophy (SMA): genotype/phenotype correlations with disease severity. Am J Med Genet. 1997;72:518.Google Scholar
80. Scriver, CR. Human genetics: lessons from Quebec populations. Annu Rev Genomics Hum Genet. 2001;2:69101.Google Scholar