Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-12T05:36:42.707Z Has data issue: false hasContentIssue false

Le Cerveau Influence-t-il le Développement Musculaire du Foetus Humain?

Published online by Cambridge University Press:  18 September 2015

Harvey B. Sarnat*
Affiliation:
Des Départements de Pédiatrie, de Pathologie, et des Sciences Neurologiques. Université de Calgary Faculté de Médecine Travail présenté à la réunion de la Child Neurology Society (des É-U) à Phoenix, Arizona, É-U, séance du 12 octobre 1984
*
Alberta Children’s Hospital, 1820 Richmond Road S.W., Calgary. Alberta T2T 5C7
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Does the human fetal brain influence muscle development? The importance of suprasegmental cerebral influence on developing human fetal muscle is less well understood than the control of histochemical differentiation of muscle by the motor neuron. Muscle biopsies of 21 hypotonic infants and children with nonprogressive congenital lesions of the cerebellum and/or brainstem were studied by histochemical methods. Two neonates who died with severely dysplastic brains and no descending motor tracts had normal muscle. The others, particularly those with cerebellar hypoplasia, had delayed muscle maturation, selective predominance of type I or II muscle fibres or disproportion in fibre sizes. It is concluded that the motor unit is capable of developing normally without suprasegmental influence, but that an abnormal balance of descending impulses may alter histochemical differentiation of fetal muscle. The small ‘subcorticospinal’ pathways arising in the brainstem probably are more influential than the larger corticospinal tract because of later myelination in the latter. The muscle biopsy thus serves to provide evidence of suprasegmental disease in infantile hypotonia.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1985

References

1.Kugelberg, E.Adaptive transformation of rat soleus motor units during growth. Histochemistry and contraction speed. J Neurol Sci 1976; 27: 269289CrossRefGoogle Scholar
2.Salmons, S., Sréter, FA.Significance of impulsive activity in the transformation of skeletal muscle type. Nature 1976; 263: 3034CrossRefGoogle ScholarPubMed
3.Engel, WK., Karpati, G.Impaired skeletal muscle maturation following neonatal neurectomy. Devel Biol 1968; 17: 713723CrossRefGoogle ScholarPubMed
4.Fidziánska-Dolot, A.Hasmanowa-Petrusewicz, I.Morphology of the lower motor neuron and muscle. Dans: Gamstorp, I. et al Sarnat, HB., rédacteurs. Progressive Spinal Muscular Atrophies. New York: Raven Press. 1984: 5589Google Scholar
5.Fenichel, GM.Cerebral influence on muscle fiber typing. The effect of fetal immobilization. Arch Neurol 1969; 20: 644649CrossRefGoogle ScholarPubMed
6.Fenichel, GM.Abnormalities of skeletal muscle maturation in brain damaged children: A histochemical study. Devel Med Child Neurol 1967;9: 419426CrossRefGoogle ScholarPubMed
7.Curless, RG., Nelson, MG., Brimmer, F.Histological patterns of muscle in infants with developmental brain abnormalities. Devel Med Child Neurol 1978; 20: 159166CrossRefGoogle ScholarPubMed
8.Farkas-Bargeton, E., Aicardi, J., Arsenio-Nunes, ML. et al. Delay in the maturation of muscle fibres in infants with congenital hypotonia. 1978; J Neurol Sci 39: 1729CrossRefGoogle ScholarPubMed
9.Voorhies, TM., Nass, RD., Vigorita, VJ.Arthrogryposis multiplex congenita in an infant with posterior agenesis of the corpus callosum. Brain Devel (Tokyo) 1984; 6: 397400CrossRefGoogle Scholar
10.Argov, Z., Gardner-Medwin, D., Johnson, MA. et al. Patterns of muscle fiber-type disproportion in hypotonic infants. Arch Neurol 1984; 41: 5357CrossRefGoogle ScholarPubMed
11.Sarnat, HB.Muscle Pathology and Histochemistry. Chicago: American Society of Clinical Pathologists Press. 1983: 133144Google Scholar
12.Sarnat, HB., deMello, DE., Blair, JD. et al. Heterotopic growth of dysplastic cerebellum in frontal encephalocele in an infant of a diabetic mother. Can, J.Neurol Scie 1982; 9: 3135Google Scholar
13.Sarnat, HB., Ryback, G., Kotagel, S. et al. Cerebral embryopathy in late first trimester: Possible association with swine influenza vaccine. Teratology 1979; 20: 93100CrossRefGoogle ScholarPubMed
14.Dehkharghani, F., Sarnat, HB., Brewster, MA. et al. Congenital muscle fiber-type disproportion in Krabbe’s leukodystrophy. Arch Neurol 1981;38: 585589CrossRefGoogle ScholarPubMed
15.Dubowitz, V.Enzymatic maturation of skeletal muscle. Nature 1963; 197: 1215.CrossRefGoogle Scholar
16.Fenichel, GM.A histochemical study of developing human skeletal muscle. Neurology 1966; 16: 741745CrossRefGoogle Scholar
17.Kumangai, T., Hakamada, S., Hara, K. et al. Developments of human fetal muscles: A comparative histochemical analysis of the psoas and the quadriceps muscles. Neuropediatrics 1984; 15: 198202CrossRefGoogle Scholar
18.Sarnat, HB.Developmental disorders of muscle. Dans: Walton, JN.Mastaglia, FL., rédacteurs. Skeletal Muscle Pathology. Edinburgh: Churchill Livingston, 1982: 140160Google Scholar
19.Morgan-Hughes, JA., Brett, EM., Lake, BD. etal. Central core disease or not? Brain 1973: 96: 527536CrossRefGoogle ScholarPubMed
20.Pou-Serradell, A., Aguiler, M., Soler, L. et al. Myopathie congénitale bénigne avec prépondérance des fibres I et rares ‘cores’ chez la mère asymptomatique. Rev Neurol (Paris) 1980; 136: 853862Google Scholar
21.Dinn, JJ., O’Doherty, N.Congenital type 11 fiber deficient myopathy. Ir J Med Sci 1980; 149: 5358CrossRefGoogle Scholar
22.Oh, SJ., Danon, MJ.Nonprogressive congenital neuromuscular disease with uniform type fibers. Arch Neurol 1983; 40: 147150CrossRefGoogle Scholar
23.Vallat, JM., Lagueny, A., Luchmaya, K. etal. Nonprogressive congenital neuromuscular disease with uniform type I fiber. Arch Neurol 1983; 40: 828829CrossRefGoogle Scholar
24.Johnson, MA., Polgar, J., Weightman, D. etal. Data on the distribution of fiber types in 36 human muscles. An autopsy study. J Neurol Sci 1973; 18: 111129CrossRefGoogle Scholar
25.Gilles, FH.Myelination of the human brain. Human Pathol 1976; 7: 244248CrossRefGoogle Scholar
26.Rorke, LB., Riggs, HE.Myelination of the Brain in the Newborn. Philadelphie, Toronto: JB Lippincott Co, 1969Google Scholar
27.Yakovlev, PI., Lecours, AR.The myelogenetic cycles of regional maturation of the brain. Dans: Minkowski, A., rédacteur. Regional Development of the Brain in Early Life. Philadelphie: FA Davis Co, 1967: 370Google Scholar
28.Sarnat, HB., Alcalá, H.Human cerebellar hypoplasia. A syndrome of diverse causes. Arch Neurol 1980; 37: 300305CrossRefGoogle ScholarPubMed
29.Gilman, S.The mechanism of cerebellar hypotonia: An experimental study in the monkey. Brain 1969; 92: 621638CrossRefGoogle ScholarPubMed
30.Morillo, LE., Ebner, TJ., Blœdel, JR.The effects of cerebellar stimulation on alpha motoneuron excitability and the stretch reflex in the cat. Electroenceph Clin Neurophysiol 1981; 51: 339352CrossRefGoogle ScholarPubMed
31.Davis, SL., Aminoff, MJ., Berg, BO.Brain-stem auditory evoked potentials in children with brain-stem or cerebellar dysfunction. Arch Neurol 1985; 42: 156160CrossRefGoogle ScholarPubMed
32.Stenvers, J-W., Eerbeck, O., de Jong, JMBV. et al. Motor activity and muscle properties in the hemidecerebellate cat. Brain 1983; 106: 601612CrossRefGoogle ScholarPubMed
33.Iba, T., Koga, H., Sahashi, K. et al. Histology and morphometry of biopsied muscle in patients with spinocerebellar degeneration. Clin Neurol (Tokyo) 1984; 24: 195204Google Scholar
34.Sarnat, HB.Anatomic and physiologic foundations of neurologic development in the perinatal period. Dans: Sarnat, HB.rédacteur. Topics in Neonatal Neurology. N.Y.: Grune and Stratton Publ. 1984: 125Google Scholar
35.Nathan, PW., Smith, MC.The rubrospinal and central tegmental tracts in man. Brain 1982; 105: 223269CrossRefGoogle ScholarPubMed
36.Lawrence, DG., Kuypers, HGJM.The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brainstem pathways. Brain 1968; 91: 1536CrossRefGoogle Scholar
37.Brooke, MH., Engel, WK.The histographic analysis of human muscle biopsies with regard to fiber types. IV. Children’s biopsies. Neurology 1969; 19: 591605CrossRefGoogle Scholar
38.Castle, ME., Reyman, TA., Schneider, ME.Pathology of spastic muscle in cerebral palsy. Clin Orthop 1979; 142: 223233Google Scholar
39.Araki, T., Endo, K., Kawai, Y. et al. Supraspinal control of slow and fast motoneurons of the cat. Prog Brain Res 1976; 44: 413432CrossRefGoogle ScholarPubMed
40.Samat, HB., Netsky, MG.Evolution of the Nervous System. Deuxième édition. N.Y., London: Oxford University Press, 1981Google Scholar
41.Martin, JJ., Clara, R., Ceuterick, CH. et al. Is congenital muscle fiber-type disproportion a true myopathy? Acta Neurol Belg 1976; 76: 335344Google Scholar
42.Volk, B.Cerebellar histogenesis and synaptic maturation following pre-and postnatal alcohol administration. Acta Neuropathol 1984; 63: 5765CrossRefGoogle ScholarPubMed
43.Karpati, G., Engel, WK.Correlative histochemical study of skeletal muscle after suprasegmental denervation, peripheral nerve section, and skeletal fixation. Neurology 1968; 18: 681692CrossRefGoogle ScholarPubMed
44.Stilwell, EW., Sahgal, V.Histochemical and morphologic changes in skeletal muscle following cervical cord injury: A study of upper and lower motor neuron lesions. Arch Phys Med Rehabil 1977; 58: 201206Google Scholar
45.Scelsi, R., Marchetti, C., Poggi, P. etal. Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Histochemical and ultrastructural aspects of rectus femoris muscle. Acta Neuropathol 1982; 57: 243248CrossRefGoogle ScholarPubMed
46.Edström, L.Selective changes in the sizes of red and white muscle fibres in upper motor lesions and parkinsonism. J Neurol Sci 1970; 11: 537550CrossRefGoogle ScholarPubMed
47.Segura, RP., Sahgal, V.Hemiplegie atrophy. Electrophysiological and morphological studies. Muscle Nerve 1981: 4: 246248CrossRefGoogle Scholar
48.Mayer, RF., Burke, RE., Toop, J. et al. The effect of spinal cord transection on motor units in cat medial gastrocnemius muscles. Muscle Nerve 1984; 7: 2331CrossRefGoogle ScholarPubMed
49.Bernstein, JJ., Wacker, W., Standler, N.Spinal motoneuron dendritic alteration after spinal cord hemisection in the rat. Exp Neurol 1984; 83: 548554CrossRefGoogle ScholarPubMed
50.McComas, AJ., Sica, REP., Upton, ARM. et al. Functional changes in motoneurons of hemiparetic patients. J Neurol Neurosurg Psychiat 1973; 36: 183193CrossRefGoogle ScholarPubMed
51.Okado, N., Oppenheim, RW.Cell death of motoneurons in the chick embryo spinal cord. IX. The loss of motoneurons following removal of afferent inputs. J Neurosci 1984; 4: 16391652CrossRefGoogle ScholarPubMed