Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-19T06:59:35.691Z Has data issue: false hasContentIssue false

New Directions in Multiple Sclerosis Therapy: Matching Therapy with Pathogenesis

Published online by Cambridge University Press:  02 December 2014

Jack Antel*
Affiliation:
Neuroimmunnology Unit, Montreal Neurologic Institute, Montreal, Quebec, Canada
*
Neuroimmunnology Unit, Montreal Neurologic Institute, 3801 University St., Room 111, Montreal, Quebec, H3A2B4, Canada.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

All currently approved therapies for multiple sclerosis (MS) modulate systemic immune components prior to their entry into the central nervous system (CNS). Available data indicate they lack impact on the progressive phases of disease; the more potent systemic immune-directed agents predispose to development of infectious or neoplastic disorders. Development of new agents that enhance disease stage related efficacy and limit systemic toxicity will need to consider the underlying mechanisms related to each phase of the clinical disorder, namely relapses, remission, and progression. This report focuses on disease related mechanisms ongoing within the CNS that contribute to the different phases of MS and how these may serve as potential therapeutic targets. Such mechanisms include CNS compartment specific immunologic properties especially as related to the innate immune system and neural cell-related properties that are determinants of the extent of actual tissue injury and repair (or lack thereof).

Résumé:

RÉSUMÉ:

Tous les médicaments approuvés actuellement pour le traitement de la sclérose en plaques (SP) modulent des composantes immunitaires systémiques avant leur entrée dans le système nerveux central (SNC). Selon certaines données, ils n'auraient pas d'impact sur les phases progressives de la maladie. Les agents systémiques les plus puissants dirigés contre la réponse immunitaire prédisposent à l'apparition de maladies infectieuses ou néoplasiques. Le développement de nouveaux agents thérapeutiques qui rehaussent l'efficacité en relation avec le stade de la maladie et limitent la toxicité systémique devra tenir compte des mécanismes sous-jacents à chaque phase de la maladie clinique dont les récidives, les rémissions et la progression. Cet article met l'emphase sur les mécanismes évolutifs reliés à la maladie dans le SNC, qui contribuent aux différentes phases de la SP, et comment ces mécanismes pourraient servir de cibles thérapeutiques potentielles. Ces mécanismes incluent les propriétés immunologiques spécifiques de chaque compartiment du SNC surtout en relation avec le système immunitaire inné et avec les propriétés des cellules nerveuses qui sont des déterminants de l'étendue de la lesion tissulaire et de sa réparation (ou de l'absence de réparation).

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2010

References

1. Coles, AJ, Wing, MG, Molyneux, P, et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol. 1999;46(3):296304.Google Scholar
2. Hawker, K, O’Connor, P, Freedman, MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial.Ann Neurol. 2009;66(4):46071.Google Scholar
3. Metz, I, Lucchinetti, CF, Openshaw, H, et al. Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis. Brain. 2007;130(Pt 5):1254–62.CrossRefGoogle ScholarPubMed
4. Weinshenker, BG, Rice, GP, Noseworthy, JH, et al. The natural history of multiple sclerosis: a geographically based study. 4. Applications to planning and interpretation of clinical therapeutic trials. Brain. 1991;114 (Pt 2):1057–67.Google Scholar
5. van Zwam, M, Huizinga, R, Melief, MJ, et al. Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med. 2009;87 (3):273–86.Google Scholar
6. Orton, SM, Herrera, BM, Yee, IM, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5 (11):9326.Google Scholar
7. Warren, KG, Catz, I. Kinetic profiles of cerebrospinal fluid anti-MBP in response to intravenous MBP synthetic peptide DENP(85)VVHFFKNIVTP(96)RT in multiple sclerosis patients. Mult Scler. 2000;6(5):300–11.Google Scholar
8. Polfliet, MM, van de Veerdonk, F, Dopp, EA, et al. The role of perivascular and meningeal macrophages in experimental allergic encephalomyelitis. J Neuroimmunol. 2002;122(1–2):18.CrossRefGoogle ScholarPubMed
9. Podojil, JR, Miller, SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev. 2009;229(1):337–55.CrossRefGoogle ScholarPubMed
10. Giacomini, PS, Darlington, PJ, Bar-Or, A. Emerging multiple sclerosis disease-modifying therapies. Curr Opin Neurol. 2009; 22(3):226–32.CrossRefGoogle ScholarPubMed
11. Hickey, WF, Hsu, BL, Kimura, H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991;28(2):254–60.Google Scholar
12. Becher, B, Bechmann, I, Greter, M. Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain. J Mol Med. 2006;84(7):532–43.Google Scholar
13. Ting, JP, Shigekawa, BL, Linthicum, DS, et al. Expression and synthesis of murine immune response-associated (Ia) antigens by brain cells. Proc Natl Acad Sci USA. 1981;78(5):3170–4.Google Scholar
14. Jack, CS, Arbour, N, Manusow, J, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol. 2005;175(7):4320–30.Google Scholar
15. Lambert, C, Desbarats, J, Arbour, N, et al. Dendritic cell differentiation signals induce anti-inflammatory properties in human adult microglia. J Immunol. 2008;181(12):8288–97.Google Scholar
16. Boven, LA, van Meurs, M, van Zwam, M, et al. Myelin-laden macrophages are anti-inflammatory, consistent with foam cells in multiple sclerosis. Brain. 2006;129(Pt 2):517–26.Google Scholar
17. Li, Y, Chu, N, Hu, A, et al. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain. 2007;130 (Pt 2):490501.CrossRefGoogle ScholarPubMed
18. Williams, K, Ulvestad, E, Waage, A, et al. Activation of adult human derived microglia by myelin phagocytosis in vitro. J Neurosci Res. 1994;38(4):433–43.Google Scholar
19. Kim, HJ, Ifergan, I, Antel, JP, et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol. 2004;172(11):7144–53.CrossRefGoogle ScholarPubMed
20. Weber, MS, Prod'homme, T, Youssef, S, et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med. 2007;13(8):935–43.Google Scholar
21. Miron, VE, Schubart, A, Antel, JP. Central nervous system-directed effects of FTY720 (fingolimod). J Neurol Sci. 2008;274(1–2): 13–7.CrossRefGoogle ScholarPubMed
22. Johnson, T, Lambert, C, Durafourt, B, et al. Effect of FTY720P on expression of S1P receptors and associated signalling in human myeloid cells. Mult Scler. 2009;15(S31-S150):S77.(Abstract)Google Scholar
23. Friese, MA, Fugger, L. Pathogenic CD8(+) T cells in multiple sclerosis. Ann Neurol. 2009;66(2):132–41.Google Scholar
24. Jurewicz, A, Biddison, WE, Antel, JP. MHC class I-restricted lysis of human oligodendrocytes by myelin basic protein peptidespecific CD8 T lymphocytes. J Immunol. 1998;160(6):3056–9.CrossRefGoogle ScholarPubMed
25. Hoftberger, R, Aboul-Enein, F, Brueck, W, et al. Expression of major histocompatibility complex class I molecules on the different cell types in multiple sclerosis lesions. Brain Pathol. 2004;14(1):4350.CrossRefGoogle Scholar
26. Fraussen, J, Vrolix, K, Martinez-Martinez, P, et al. B cell characterization and reactivity analysis in multiple sclerosis. Autoimmun Rev. 2009;8(8):654–8.CrossRefGoogle ScholarPubMed
27. Mathey, EK, Derfuss, T, Storch, MK, et al. Neurofascin as a novel target for autoantibody-mediated axonal injury. J Exp Med. 2007;204(10):2363–72.Google Scholar
28. Antel, JP. The CNS as a therapeutic target in multiple sclerosis. Curr Neurol Neurosci Rep. 2008;8(6):445–7.Google Scholar
29. Wosik, K, Antel, J, Kuhlmann, T, et al. Oligodendrocyte injury in multiple sclerosis: a role for p53. J Neurochem. 2003;85(3): 635–44.CrossRefGoogle ScholarPubMed
30. Stadelmann, C, Ludwin, S, Tabira, T, et al. Tissue preconditioning may explain concentric lesions in Balo’s type of multiple sclerosis. Brain. 2005;128(Pt 5):979–87.Google Scholar
31. Lin, W, Popko, B. Endoplasmic reticulum stress in disorders of myelinating cells. Nat Neurosci. 2009;12(4):379–85.Google Scholar
32. Saikali, P, Antel, JP, Newcombe, J, et al. NKG2D-mediated cytotoxicity toward oligodendrocytes suggests a mechanism for tissue injury in multiple sclerosis. J Neurosci. 2007;27(5): 1220–8.Google Scholar
33. Meresse, B, Chen, Z, Ciszewski, C, et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity. 2004;21(3):357–66.CrossRefGoogle ScholarPubMed
34. Saikali, P, Antel, JP, Arbour, N. Functional interleukin-15 provided by human astrocytes promotes effector memory CD8 T cell responses in active multiple sclerosis lesions. J Neuroimmunology. 2008;203(128). (Abstract)Google Scholar
35. Giuliani, F, Goodyer, CG, Antel, JP, et al. Vulnerability of human neurons to T cell-mediated cytotoxicity. J Immunol. 2003;171(1):368–79.Google Scholar
36. Wang, T, Allie, R, Conant, K, et al. Granzyme B mediates neurotoxicity through a G-protein-coupled receptor. FASEB J. 2006;20(8):1209–11.Google Scholar
37. Darlington, PJ, Podjaski, C, Horn, KE, et al. Innate immune-mediated neuronal injury consequent to loss of astrocytes. J Neuropathol Exp Neurol. 2008;67(6):590–9.CrossRefGoogle ScholarPubMed
38. Vincent, T, Saikali, P, Cayrol, R, et al. Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol. 2008;181(8):5730–7.Google Scholar
39. Bennett, JL, Lam, C, Kalluri, SR, et al. Intrathecal pathogenic antiaquaporin- 4 antibodies in early neuromyelitis optica. Ann Neurol. 2009;66(5):617–29.Google Scholar
40. Albert, M, Antel, J, Bruck, W, et al. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 2007; 17(2):129–38.Google Scholar
41. Windrem, MS, Schanz, SJ, Guo, M, et al. Neonatal chimerization with human glial progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated shiverer mouse. Cell Stem Cell. 2008;2(6):553–65.Google Scholar
42. Miron, VE, Rajasekharan, S, Jarjour, AA, et al. Simvastatin regulates oligodendroglial process dynamics and survival. Glia. 2007;55 (2):130–43.Google Scholar
43. Miron, VE, Jung, CG, Kim, HJ, et al. FTY720 modulates human oligodendrocyte progenitor process extension and survival. Ann Neurol. 2008;63(1):6171.CrossRefGoogle ScholarPubMed
44. Miron, VE, Zehntner, SP, Kuhlmann, T, et al. Statin therapy inhibits remyelination in the central nervous system. Am J Pathol. 2009;174(5):1880–90.Google Scholar
45. Klopfleisch, S, Merkler, D, Schmitz, M, et al. Negative impact of statins on oligodendrocytes and myelin formation in vitro and in vivo. J Neurosci. 2008;28(50):13609–14.Google Scholar
46. Miron, VE, Darlington, PJ, Ludwin, SK, et al. Fingolimod (FTY720) enhances remyelination following demyelination of organotypic cerebellar slices. Am J Pathol. 2010;176(6):2682–94.Google Scholar
47. Gregg, C, Shikar, V, Larsen, P, et al. White matter plasticity and enhanced remyelination in the maternal CNS. J Neurosci. 2007;27(8):1812–23.Google Scholar
48. Franciotta, D, Salvetti, M, Lolli, F, et al. B cells and multiple sclerosis. Lancet Neurol. 2008;7(9):852–8.CrossRefGoogle ScholarPubMed
49. Waxman, SG. Mechanisms of disease: sodium channels and neuroprotection in multiple sclerosis-current status. Nat Clin Pract Neurol. 2008;4(3):159–69.Google Scholar
50. Trapp, BD, Stys, PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009; 8(3):280–91.Google Scholar
51. Mahad, D, Lassmann, H, Turnbull, D. Review: Mitochondria and disease progression in multiple sclerosis. Neuropathol Appl Neurobiol. 2008;34(6):577–89.Google Scholar
52. Frischer, JM, Bramow, S, Dal Bianco, A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009;132(Pt 5):1175–89.Google Scholar
53. Goldschmidt, T, Antel, J, Konig, FB, et al. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology. 2009;72(22):1914–21.Google Scholar
54. Kuhlmann, T, Miron, V, Cui, Q, et al. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008;131(Pt 7): 1749–58.Google Scholar