Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-12T05:26:14.728Z Has data issue: false hasContentIssue false

The Role of Chemotherapy in the Treatment of Malignant Astrocytomas

Published online by Cambridge University Press:  02 December 2014

David Mathieu
Affiliation:
Divisions of Neurosurgery/Neuro-Oncology, Department of Surgery, Sherbrooke University and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
David Fortin*
Affiliation:
Divisions of Neurosurgery/Neuro-Oncology, Department of Surgery, Sherbrooke University and Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
*
Centre Hospitalier Universitaire de Sherbrooke (CHUS), 3001 - 12e Avenue Nord, Sherbrooke, Québec, J1H 5N4, Canada.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Malignant astrocytomas are aggressive neoplasms with a dismal prognosis despite optimal treatment. Maximal resective surgery is traditionally complemented by radiation therapy. Chemotherapy is now used on patients as initial therapy when their functional status is congruent with further treatment. The classic agents used are nitrosoureas, but temozolomide has taken the front seat recently, with recent data demonstrating increased survival when this agent is used concurrently with radiation therapy in newly diagnosed glioblastoma patients. A new class of agents, refered to as biological modifiers, are increasingly used in clinical trials in an effort to affect the intrinsic biologic aberrations harboured by tumor cells. These drugs comprise differentiation agents, anti-angiogenic agents, matrix-metalloproteinase inhibitors and signal transduction inhibitors, among others. This article reviews the standard cytotoxic agents that have been used to treat malignant astrocytomas, and the different combination regimens offering promise. In addition, recent advances with biological modifiers are also discussed.

Résumé:

RÉSUMÉ:

Les astrocytomes malins sont des tumeurs agressives dont le pronostic est sombre en dépit d’un traitement optimal. Traditionnellement, la radiothérapie servait de complément à la résection maximale. La chimiothérapie est maintenant utilisée initialement, si l’état du patient le justifie. Les agents classiques utilisés sont les nitrosourées. Cependant, le temozolomide les a supplantées récemment parce qu’on a observé une prolongation de la survie quand cet agent est utilisé en meme temps que la radiothérapie chez les nouveaux patients. Une nouvelle classe d’agents, des modificateurs de la réponse biologique, font l’objet d’essais thérapeutiques de plus en plus nombreux pour tenter de contrecarrer les aberrations biologiques intrinsèques des cellules tumorales. Parmi ces substances, notons des agents de différenciation, des agents antiangiogéniques, des inhibiteurs des métalloprotéinases matricielles et des inhibiteurs de la transduction du signal. Cet article revoit les agents cytotoxiques standards utilisés dans le traitement des astrocytomes malins et les différentes combinaisons thérapeutiques prometteuses ainsi que les progrès récents réalisés dans l’étude des modificateurs de la réponse biologique.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Kleihues, P, Burger, PC, Scheithauer, BW. Histological typing of tumors of the central nervous system. International Histological Classification of Tumours. Geneva, Switzerland, World Health Organization, 1995.Google Scholar
2. Daumas-Duport, C, Varlet, P, Tucker, M-L, et al. Oligodendro-gliomas: Part 1-Patterns of growth, histological diagnosis, clinical and imaging correlations: A study of 153 cases. J Neurooncol. 1997; 34:3759.CrossRefGoogle Scholar
3. Kleihues, P, Soylemezoglu, F, Schauble, B, Scheithauer, BW, Burger, PC. Histopathology, classification, and grading of gliomas. Glia. 1995; 15:211221.CrossRefGoogle ScholarPubMed
4. Alvord, EC. Is necrosis helpful in the grading of gliomas? Editorial opinion. Neuropathol Exp Neurol. 1992; 51:12732.CrossRefGoogle ScholarPubMed
5. Friedman, HS, Kerby, T, Calvert, H. Temozolomide and treatment of malignant glioma. Clin Cancer Res. 2000; 6:258597.Google ScholarPubMed
6. Giles, GG, Gonzales, MF. Epidemiology of brain tumors and factor in prognosis. In: Kaye, AH, Laws, ER, editors. Brain tumours, an encyclopedic approach. London: Churchill Livingstone; 2001, p. 5170.Google Scholar
7. Silbergeld, DL, Chicoine, MR. Isolation and characterization of human malignant glioma cells from histologically normal brain. J Neurosurg. 1997; 86:52531.CrossRefGoogle ScholarPubMed
8. Huncharek, M, Muscat, J. Treatment of recurrent high grade astrocytoma; results of a systematic review of 1,415 patients. Anticancer Res. 1998; 18:130312.Google Scholar
9. Huncharek, M, Muscat, J, Geschwing, JF. Multi-drug versus single agent chemotherapy for high grade astrocytoma; results of a meta-analysis. Anticancer Res. 1998; 18:46938.Google ScholarPubMed
10. Buatti, JM, Marcus, RB, Mendenhall, WM, Friedman, WA, Boya, FJ. Accelerated hyperfractionated radiotherapy for malignant gliomas. Int J Radiat Oncol Biol Phys. 1996; 34:78592.CrossRefGoogle ScholarPubMed
11. Shin, KH, Muller, PJ, Geggie, PHS. Superfractionation radiation therapy in the treatment of malignant astrocytoma. Cancer. 1983; 52:20403.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
12. Laperriere, N, Zuraw, L, Cairncross, G. The Cancer Care Ontario Practice Guidelines Initiative Neuro-Oncology Disease Site Group: radiotherapy for newly diagnosed malignant glioma in adults: a systematic review. Radiother Oncol. 2002; 64:25973.CrossRefGoogle ScholarPubMed
13. Brandes, AA, Pasetto, LM, Monfardini, S. New drugs in recurrent high grade gliomas. Anticancer Res. 2000; 20:191320.Google ScholarPubMed
14. Osoba, D, Brada, M, Yung, WKA, Prados, MD. Health-related quality of life in patients treated with temozolomide versus procarbazine for recurrent glioblastoma multiforme. J Clin Oncol. 2000; 18:148191.CrossRefGoogle ScholarPubMed
15. Yung, WKA, Albright, RE, Olson, J, et al. A phase II study of temozolomide vs. Procarbazine in patients with glioblastoma multiforme at first relapse. Br J Cancer. 2000; 83:58893.CrossRefGoogle ScholarPubMed
16. Stupp, R, Mason, W, van de Bent, MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005; 352:98796.CrossRefGoogle ScholarPubMed
17. Fortin, D. Altering the properties of the blood-brain-barrier: disruption and permeabilization. In: Prokai, L, Prokai-Tatrai, K, editors. Peptide transport and delivery into the central nervous system. Basel: Birkhauser; 2003. p. 12754.Google Scholar
18. Walker, MD, Alexander, E Jr, Hunt, WE, et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg. 1978; 49:33343.CrossRefGoogle ScholarPubMed
19. Walker, MD, Green, SB, Byar, DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med. 1980; 303:13239.CrossRefGoogle ScholarPubMed
20. Van den Bent, MJ. Chemotherapy in adult malignant glioma. Front Radiat Ther Oncol. 1999; 33:17491.CrossRefGoogle ScholarPubMed
21. Fine, HA, Dear, KBG, Loeffler, JS, Black, PM, Canellos, GP. Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer. 1993; 71:258597.3.0.CO;2-S>CrossRefGoogle ScholarPubMed
22. Stewart, LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet. 2002; 359:10118.Google ScholarPubMed
23. Levin, VA. Chemotherapy for brain tumors of astrocytic and oligodendroglial lineage: the past decade and where we are healing. Neuro-Oncol. 1999; 1:6980.CrossRefGoogle Scholar
24. Brandes, AA, Tosoni, A, Amista, P, et al. How effective is BCNU in recurrent glioblastoma in the modern era? A phase II trial. Neurology. 2004; 63:12814.CrossRefGoogle Scholar
25. Levin, VA, Silver, P, Hannigan, J, et al. Superiority of post-radiotherapy adjuvant chemotherapy with CCNU, procarbazine and vincristine (PCV) over BCNU for anaplastic gliomas: NCOG 6G61 final report. Int J Radiat Oncol Biol Phys. 1990; 18:3214.CrossRefGoogle ScholarPubMed
26. Fortin, D, Cairncross, JG, Hammond, RR. Oligodendroglioma: an appraisal of recent data pertaining to diagnosis and treatment. Neurosurgery. 1999; 45:127991.CrossRefGoogle ScholarPubMed
27. Prados, MD, Scott, C, Curran, WJ, et al. Procarbazine, Lomustine and Vincristine (PCV) chemotherapy for anaplastic astrocytoma: a retrospective review of radiation therapy oncology group protocols comparing survival with carmustine or PCV adjuvant chemotherapy. J Clin Oncol. 1999; 17:338995.CrossRefGoogle ScholarPubMed
28. Medical Research Council Brain Tumour Working Party. Randomized trial of procarbazine, lomustine, and vincristine in the adjuvant treatment of high-grade astrocytomas: a Medical Research Council Trial. J Clin Oncol. 2001; 19:50918.CrossRefGoogle Scholar
29. Go, RS, Adjei, AA. Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol. 1999; 17:40922.CrossRefGoogle ScholarPubMed
30. O’Duyer, PJ, Stevenson, JP, Johnson, SW. Clinical pharmacokinetics and administration of established platinum drugs. Drugs. 2000; 59 S4:1927.Google Scholar
31. Selvaratnam, G, Philips, RH, Mohamed, AK, Radzi, A. Adverse effects of cytotoxics-platinum agents. Adverse Drug React Toxicol Rev. 1997; 16:17197.Google ScholarPubMed
32. Prados, MD, Warnick, RE, Mack, EE, et al. Intravenous carboplatin for recurrent gliomas. Am J Clin Oncol. 1996; 19:60912.CrossRefGoogle ScholarPubMed
33. Twelves, CJ, Ash, CM, Miles, DW, Thomas, DGT, Souhami, RL. Activity and toxicity of carboplatin and iproplatin in relapsed high-grade glioma. Cancer Chemother Pharmacol. 1991; 27:4813.CrossRefGoogle ScholarPubMed
34. Warnick, RE, Prados, MD, Mack, EE, et al. A phase II study of intravenous carboplatin for the treatment of recurrent gliomas. J Neurooncol. 1994; 19:6974.CrossRefGoogle ScholarPubMed
35. Yung, WKA, Mechitler, L, Gleason, MJ. Intravenous carboplatin for recurrent malignant glioma: A phase II study. J Clin Oncol. 1991; 9:8604.CrossRefGoogle ScholarPubMed
36. Huncharek, M, Kupelnick, B, Bishop, D. Platinum analogues in the treatment of recurrent high grade astrocytoma. Cancer Treat Rev. 1998; 24:30716.CrossRefGoogle ScholarPubMed
37. Lunardi, P, Farah, JO, Mastronardi, L, Puzzilli, F, Lo Bianco, FM. Intravenous administration of high doses of carboplatin in multimodal treatment of high grade gliomas: a phase II study. Acta Neurochir. 1996; 138:21520.CrossRefGoogle ScholarPubMed
38. Choi, IS, Lee, SH, Kim, TY, et al. Phase II study of chemotherapy with ACNU plus cisplatin followed by cranial irradiation in patients with newly diagnosed glioblastoma multiforme. J Neurooncol. 2002; 60:1716.CrossRefGoogle ScholarPubMed
39. Brandes, AA, Pasetto, LM, Vastola, F, Monfardini, S. Temozolomide in patients with high grade gliomas. Oncology. 2000; 59:1816.CrossRefGoogle ScholarPubMed
40. Newlands, ES, Stevens, FG, Wedge, SR, Wheelhouse, RT, Brock, C. Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev. 1997; 23:3561.CrossRefGoogle ScholarPubMed
41. Friedman, HS. Temozolomide in early stages of newly diagnosed malignant glioma and neoplastic meningitis. Semin Oncol. 2000; 27:3540.Google ScholarPubMed
42. Yung, WKA. Temozolomide in malignant gliomas. Sem Oncol. 2000; 27:2734.Google ScholarPubMed
43. Bower, M, Newlands, ES, Bleehen, NM, et al. Multicentre CRC phase II trial of temozolomide in recurrent or progressive high-grade glioma. Cancer Chemother Pharmacol. 1997; 40:4848.CrossRefGoogle ScholarPubMed
44. Yung, WKA, Prados, MD, Yaya-Tur, R, et al. Multicenter phase II trial of temozolomide in patients with anaplastic astrocytoma or anaplastic oligoastrocytoma at first relapse. J Clin Oncol. 17:276271.CrossRefGoogle Scholar
45. Osoba, D, Brada, M, Yung, WKA, Prados, MD. Health-related quality of life in patients with anaplastic astrocytoma during treatment with temozolomide. Eur J Cancer. 2000; 36:178895.CrossRefGoogle ScholarPubMed
46. Brock, CS, Newlands, ES, Wedge, SR, et al. Phase I trial of Temozolomide using an extended continuous oral schedule. Cancer Res. 1998; 58:43637.Google ScholarPubMed
47. Khan, RB, Raizer, JJ, Malkin, MG, Bazylewicz, KA, Abrey, LE. A phase II study of extended low-dose temozolomide in recurrent malignant gliomas. Neuro-oncol. 2002; 4:3943.CrossRefGoogle ScholarPubMed
48. Prados, MD. Future directions in the treatment of malignant gliomas with temozolomide. Sem Oncol. 2000; 27:416.Google ScholarPubMed
49. Stupp, R, Dietrich, P, Kraljevic, SO, et al. Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol. 2002; 20:137582.CrossRefGoogle ScholarPubMed
50. Athanassiou, H, Synodinou, M, Maragoudakis, E, et al. Randomized phase II study of temozolomide and radiotherapy compared with radiotherapy alone in newly diagnosed glioblastoma multiforme. J Clin Oncol. 2005; 23:23727.CrossRefGoogle ScholarPubMed
51. Hande, KR. Etoposide pharmacology. Sem Oncol. 1992; 19 S13:39.Google ScholarPubMed
52. Hande, KR. Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer. 1998; 34:151421.CrossRefGoogle ScholarPubMed
53. Simon, J. The clinical pharmacology of etoposide: an update. Cancer Treat Rev. 1996; 22:179221.Google Scholar
54. Kobayashi Ratain, MJ. New perspectives on the toxicity of etoposide. Semin Oncol. 1992; 19 S13:7883.Google Scholar
55. Kiya, K, Uozumi, T, Ogasawara, H, et al. Penetration of etoposide into human malignant brain tumors after intravenous and oral administration. Cancer Chemother Pharmacol. 1992; 29:33942.CrossRefGoogle ScholarPubMed
56. Beauchesne, P, Bonner, JA, Mornex, F, Brunon, J. Étude de la sensibilité à l’étoposide de lignées humaines de gliomes malins. Mécanismes d’action. Cancer Radiother. 1999; 3:5764.CrossRefGoogle Scholar
57. Jeremic, B, Grujicic, D, Jevremovic, S, et al. Carboplatin and etoposide chemotherapy regimen for recurrent malignant glioma: a phase II study. J Clin Oncol. 1992; 10:10747.CrossRefGoogle ScholarPubMed
58. Franceschi, E, Cavallo, G, Scopece, L, et al. Phase II trial of carboplatin and etoposide for patients with recurrent high-grade glioma. Br J Cancer. 2004; 91:103844.CrossRefGoogle ScholarPubMed
59. Hainsworth, JD. Extended-schedule oral etoposide in selected neoplasms and overview of administration and scheduling issues. Drugs. 1999; 58 Supp3:516.CrossRefGoogle ScholarPubMed
60. Fulton, D, Urtasun, R, Forsyth, P. Phase II study of prolonged oral therapy with etoposide (VP16) for patients with recurrent malignant glioma. J Neurooncol. 1996; 27:14955.CrossRefGoogle ScholarPubMed
61. Korones, DN, Fisher, PG, Cohen, KJ, Dubowy, RL. No responses to oral etoposide in 15 patients with recurrent brain tumors. Med Pediat Oncol. 2000; 35:802.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
62. Needle, MN, Molloy, PT, Ceyer, JR, et al. Phase II study of daily oral etoposide in children with recurrent brain tumors and other solid tumors. Med Pediat Oncol. 1997; 29:2832.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
63. Friedman, HS, Petros, WP, Friedman, AH, et al. Irinotecan therapy in adults with recurrent or progressive malignant glioma. J Clin Oncol. 1999; 17:151625.CrossRefGoogle ScholarPubMed
64. MacDonald, D, Cairncross, G, Stewart, D, et al. Phase II study of topotecan in patients with recurrent malignant glioma. Ann Oncol. 1996; 7:2057.CrossRefGoogle ScholarPubMed
65. Brandes, AA, Tosoni, A, Basso, U, et al. Second-line chemotherapy with irinotecan plus carmustine in glioblastoma recurrent or progressive after first-line temozolomide chemotherapy: a phase II study of the Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). J Clin Oncol. 2004; 22:477986.CrossRefGoogle ScholarPubMed
66. Gross, MW, Altscher, R, Brandtner, M, et al. Open-label simultaneous radio-chemotherapy of glioblastoma multiforme with topotecan in adults. Clin Neurol Neurosurg. 2005; 107:20713.CrossRefGoogle ScholarPubMed
67. Long, HJ. Paclitaxel (Taxol): a novel anticancer chemotherapeutic drug. Mayo Clin Proc. 1994; 69:3415.CrossRefGoogle ScholarPubMed
68. Rowinsky, EK, Nave, LA, Donehower, RC. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst. 1990; 82:124759.CrossRefGoogle ScholarPubMed
69. Vaishampayan, U, Parchment, RE, Jasti, BR, et al. Taxanes: an overview of the pharmacokinetics and pharmacodynamics. Urology. 1999; 54:S229.CrossRefGoogle ScholarPubMed
70. Chang, SM, Kuhn, JG, Robins, HI, et al. A phase II study of paclitaxel in patients with recurrent malignant glioma using different doses depending upon the concomitant use of anticonvulsants. Cancer. 2001; 91:41722.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
71. Terzis, AJ, Thorsen, F, Heese, O, et al. Proliferation, migration and invasion of human glioma cells exposed to paclitaxel (Taxol) in vitro. Br J Cancer. 1997; 75:174452.CrossRefGoogle ScholarPubMed
72. Chamberlain, MC, Kormanik, PA. Salvage chemotherapy with paclitaxel for recurrent primary brain tumors. J Clin Oncol. 1995; 13:206671.CrossRefGoogle ScholarPubMed
73. Forsyth, P, Cairncross, G, Stewart, D, et al. Phase II trial of docetaxel in patients with recurrent malignant glioma: a study of the National Cancer Institute of Canada Clinical Trials Group. Invest New Drugs. 1996; 14:2036.CrossRefGoogle ScholarPubMed
74. Postma, TJ, Heimans, JJ, Luykx, SA, et al. A phase II study of paclitaxel in chemonaive patients with recurrent high-grade glioma. Ann Oncol. 2000; 11:40913.CrossRefGoogle ScholarPubMed
75. Sanson, M, Napolitano, M, Yaya, R, et al. Second line chemotherapy with docetaxel in patients with recurrent malignant glioma: a phase II study. J Neurooncol. 2000; 50:2459.CrossRefGoogle ScholarPubMed
76. Rowinsky, EK. Taxane analogues: distinguishing royal robes from the “Emperor’s new clothes”. Clin Cancer Res. 2002; 8:275963.Google ScholarPubMed
77. Pipas, JM, Meyer, LP, Rhodes, CH, et al. A phase II trial of paclitaxel and topotecan with filgrastim in patients with recurrent or refractory glioblastoma multiforme or anaplastic astrocytoma. J Neurooncol. 2005; 71:3015.CrossRefGoogle ScholarPubMed
78. Koukourakis, MI, Giatromanolaki, A, Schiza, S, Kakolyris, S, Georgoulias, V. Concurrent twice-a-week docetaxel and radiotherapy: a dose escalation trial with immunological toxicity evaluation. Int J Radiat Oncol Biol Phys. 1999; 43:10714.CrossRefGoogle ScholarPubMed
79. Wehbe, T, Glantz, M, Choy, H, et al. Histologic evidence of a radiosensitizing effect of Taxol in patients with astrocytomas. J Neurooncol. 1998; 39:24551.CrossRefGoogle ScholarPubMed
80. Hande, KR. Clinical applications of anticancer drugs targeted to topoisomerase II. Biochim Biophys Acta. 1998; 1400:17384.CrossRefGoogle ScholarPubMed
81. Lown, JW. Anthracycline and anthraquinone anticancer agents: current status and recent developments. Pharmac Ther. 1993; 60:185214.CrossRefGoogle ScholarPubMed
82. Darling, JL, Thomas, DG. Response of short-term cultures derived from human malignant glioma to aziridinylbenzoquinone, etoposide and doxorubicin: an in vitro phase II trial. Anticancer Drugs. 2001; 12:75360.CrossRefGoogle ScholarPubMed
83. Kaaijk, P, Troost, D, de Boer, OJ, et al. Daunorubicin and doxorubicin but not BCNU have deleterious effects on organotypic multicellular spheroids of gliomas. Brit J Cancer. 1996; 74:18793.CrossRefGoogle Scholar
84. Kuratsu, J, Mihara, Y, Kochi, M, Takaki, S, Ushio, Y. Antitumor effect of a new anthracyclines derivative, MX2, against human glioma cells. Gan To Kagaku Ryoho. 1989; 16:399403.Google ScholarPubMed
85. Stan, AC, Casares, S, Radu, D, Walter, GF, Brumeanu, TD. Doxorubicin-induced cell death in highly invasive human gliomas. Anticancer Res. 1999; 19:94150.Google ScholarPubMed
86. Wolff, JEA, Trilling, T, Mölenkamp, G, Egeler, RM, Jürgens, H. Chemosensitivity of glioma cells in vitro: a meta-analysis. J Cancer Res Clin Oncol. 1999; 125:4816.CrossRefGoogle ScholarPubMed
87. Sato, Y, Eddy, L, Hochstein, P. Comparative cardiotoxicity of doxorubicin and a morpholino anthracycline derivative (KRN8602). Biochem Pharmacol. 1991; 42:22837.CrossRefGoogle Scholar
88. Clarke, K, Basser, RL, Underhill, C, et al. KRN8602 (MX2-Hydrochloride): an active new agent for the treatment of recurrent high-grade glioma. J Clin Oncol. 1999; 17:257984.CrossRefGoogle ScholarPubMed
89. Kuratsu, J, Arita, N, Kurisu, K, et al. A phase II study of KRN8602 (MX2), a novel morpholino anthracyclines derivative, in patients with recurrent malignant glioma. J Neurooncol. 1999; 42:17781.CrossRefGoogle ScholarPubMed
90. Kuratsu, J, Arita, N, Kayama, T, et al. Phase II trial of pre-irradiation KRN8602 (MX2) in malignant glioma patients. J Neurooncol. 2000; 48:1459.CrossRefGoogle ScholarPubMed
91. Fabel, K, Dietrich, J, Hau, P, et al. Long-term stabilization in patients with malignant glioma after treatment with liposomal doxorubicin. Cancer 2001; 92:193642.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
92. Chua, SL, Rosenthal, MA, Wong, SS, et al. Phase II study of temozolomide and Caelyx in patients with recurrent glioblastoma multiforme. Neuro-oncol. 2004; 6:3843.CrossRefGoogle ScholarPubMed
93. Plowman, J, Waud, WR, Koutsoukos, AD, et al. Preclinical antitumor activity of Temozolomide in mice: efficacy against human brain tumor Xenografts and Synergism with 1,3-Bis (2-chloroethyl)-1-nitrosourea. Cancer Res. 1994; 54:37939.Google Scholar
94. Esteller, M, Garcia-Foncillas, J, Andion, E, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000; 343:13504.CrossRefGoogle ScholarPubMed
95. Hegi, ME, Diserens, AC, Godard, S, et al. Clinical trial substantiates the predictive value of O-6_Methylguanine-DNA Methyl-transferase promoter methylation in glioblastoma patients treated with temozolomide. Clin Cancer Res. 2004; 10:18714.CrossRefGoogle Scholar
96. Hegi, ME, Diserens, AC, Gorlia, T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005; 352:9971003.CrossRefGoogle ScholarPubMed
97. Friedman, HS, Kokkinakis, DM, Pluda, J, et al. Phase I trial of O6-Benzylguanine for patients undergoing surgery for malignant glioma. J Clin Oncol. 1998; 16:35705.CrossRefGoogle ScholarPubMed
98. Mastronardi, L, Puzzilli, F, Ruggeri, A. Tamoxifen as a potential treatment of glioma. Anticancer Drugs. 1998; 9:5816.CrossRefGoogle ScholarPubMed
99. Tallman, MS, Wiernik, PH. Retinoids in cancer treatment. J Clin Pharmacol. 1992; 32:86888.CrossRefGoogle ScholarPubMed
100. Pemrick, SM, Lucas, DA, Grippo, J. The retinoid receptors. Leukemia. 1994; 8:17971806.Google ScholarPubMed
101. Westarp, ME, Westarp, MP, Grundl, W, Biesalski, H, Kornhuber, HH. Improving medical approaches to primary CNS malignancies - Retinoid therapy and more. Med Hypotheses. 1993; 41:26776.CrossRefGoogle ScholarPubMed
102. Bouterfa, H, Picht, T, Keb, D, et al. Retinoids inhibit human glioma cell proliferation and migration in primary cell cultures but not in established cell lines. Neurosurgery. 2000; 46:41930.CrossRefGoogle ScholarPubMed
103. Mukherjee, P, Das, SK. Action of retinoic acid on human glioblastoma-astrocytoma - 14 cells in culture. Neoplasma. 1995; 42:1238.Google ScholarPubMed
104. Muindi, JRF, Young, CW, Warrell, RP. Jr Clinical pharmacology of all-trans retinoic acid. Leukemia. 1994; 8:180712.Google ScholarPubMed
105. Phuphanich, S, Scott, C, Fischbach, AJ, Langer, C, Yung, WKA. All-trans-retinoic acid: a phase II radiation therapy oncology group study (RTOG 91-13) in patients with recurrent malignant astrocytoma. J Neurooncol. 1997; 34:193200.CrossRefGoogle Scholar
106. Yung, WKA, Kyritsis, AP, Gleason, MJ, Levin, VA. Treatment of recurrent malignant gliomas with high-dose 13-cis-retinoic acid. Clin Cancer Res. 1996; 2:19315.Google ScholarPubMed
107. Jaeckle, KA, Hess, KR, Yung, WKA, et al. Phase II evaluation of temozolomide and 13-cis retinoic acid for the treatment of recurrent and progressive malignant glioma: a North American Brain Tumor Consortium study. J Clin Oncol. 2003; 21:230511.CrossRefGoogle ScholarPubMed
108. Butowski, N, Prados, MD, Lamborn, KR, et al. A phase II study of concurrent temozolomide and cis-retinoic acid with radiation for adult patients with newly diagnosed supratentorial glioblastoma. Int J Radiat Oncol Biol Phys. 2005; 61:14549.CrossRefGoogle ScholarPubMed
109. Magrassi, L, Butti, G, Pezzotta, S, Infuso, L, Milanesis, G. Effects of vitamin D and retinoic acid on human glioblastoma cell lines. Acta Neurochir. 1995; 133:18490.CrossRefGoogle ScholarPubMed
110. Trouillas, P, Honnorat, J, Bret, P, Jouvert, A, Gerard, JP. Redifferentiation therapy in brain tumors: long-lasting complete regression of gliobastomas and an anaplastic astrocytoma under long term 1-alpha-hydroxycholecalciferol. J Neurooncol. 2001; 51:5766.CrossRefGoogle Scholar
111. Magrassi, L, Adorni, L, Montorfano, G, et al. Vitamin D metabolites activate the sphingomyelin pathway and induce death of glioblastoma cells. Acta Neurochir. 1998; 140:70714.CrossRefGoogle ScholarPubMed
112. Baudet, C, Chevalier, G, Naveilhan, P, et al. Cytotoxic effects of 1 alpha, 25-dihydroxyvitamin D3 and synthetic vitamin D3 analogues on a glioma cell line. Cancer Lett. 1996; 100:310.CrossRefGoogle ScholarPubMed
113. Naveilhan, P, Berger, F, Haddad, K, et al. Induction of glioma cell death by 1,25(OH)2 vitamin D3: towards an endocrine therapy of brain tumors? J Neurosci Res. 1994; 37:2717.CrossRefGoogle Scholar
114. Brown, PD. Matrix metalloproteinase inhibitors in the treatment of cancer. Med Oncol. 1997; 14:110.CrossRefGoogle ScholarPubMed
115. Brown, PD. Matrix metalloproteinase inhibitors. Breast Cancer Res Treat. 1998; 52:12536.CrossRefGoogle ScholarPubMed
116. Hidalgo, M, Eckhardt, SG. Development of matrix metalloproteinase inhibitors in cancer therapy. J Natl Cancer Inst. 2001; 93:17893.CrossRefGoogle ScholarPubMed
117. Rémy, L. Données récentes sur les métalloprotéinases, acteurs incontournables de la progression tumorale [in French]. Pathol Biol. 1997; 45:75965.Google Scholar
118. Yip, D, Ahmad, A, Karapetis, CS, Hawkins, CA, Harper, PG. Matrix metalloproteinase inhibitors: applications in oncology. Invest New Drugs. 1999; 17:38799.CrossRefGoogle ScholarPubMed
119. Chintala, SK, Tonn, JC, Rao, JS. Matrix metalloproteinases and their biological function in human gliomas. Int J Dev Neurosci. 1999; 17:495502.CrossRefGoogle ScholarPubMed
120. Thier, M, Roeb, E, Breuer, B, et al. Expression of matrix metalloproteinase-2 in glial and neuronal tumor cell lines: inverse correlation with proliferation rate. Cancer Lett. 2000; 149:6370.CrossRefGoogle ScholarPubMed
121. Uhm, JH, Dooley, NP, Villemure, JG, Yong, VW. Mechanisms of glioma invasion: role of Matrix-Metalloproteinases. Can J Neurol Sci. 1997; 24:315.CrossRefGoogle ScholarPubMed
122. Brown, PD. Matrix metalloproteinase inhibitors: a novel class of anticancer agents. Adv Enzyme Regul. 1995; 35:293301.CrossRefGoogle ScholarPubMed
123. Brown, PD. Clinical studies with matrix metalloproteinase inhibitors. APMIS. 1999; 107:17480.CrossRefGoogle ScholarPubMed
124. Rothenberg, ML, Nelson, AR, Hande, KR. New Drugs on the Horizon: Matrix Metalloproteinase Inhibitors. Stem Cells. 1999; 17:23740.CrossRefGoogle ScholarPubMed
125. Talbot, DC, Brown, PD. Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur J Cancer. 1996; 32:252833.CrossRefGoogle Scholar
126. Noha, M, Yoshida, D, Watanabe, K, Teramoto, A. Suppression of cell invasion on human malignant glioma cell lines by a novel matrix-metalloproteinase inhibitor SI-27: in vitro study. J Neurooncol. 2000; 48:21723.CrossRefGoogle ScholarPubMed
127. Price, A, Shi, Q, Morris, D, et al. Marked inhibition of tumor growth in a malignant glioma tumour model by a novel synthetic matrix metalloproteinase inhibitor AG3340. Clin Cancer Res. 1999; 5:84554.Google Scholar
128. Tonn, JC, Kerkau, S, Hanke, A, et al. Effect of synthetic matrix-metalloproteinase inhibitors on invasive capacity and proliferation of human malignant gliomas in vitro. Int J Cancer. 1999; 80:76472.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
129. Brown, PD. Ongoing trials with matrix metalloproteinase inhibitors. Exp Opin Invest Drugs. 2000; 9:216777.CrossRefGoogle ScholarPubMed
130. Groves, MD, Puduvalli, VK, Hess, KR, et al. Phase II trial of Temozolomide plus the Matrix Metalloproteinase Inhibitor, Marimastat, in recurrent and progressive Glioblastoma Multiforme. J Clin Oncol. 2002; 20:13838.CrossRefGoogle ScholarPubMed
131. Kirsch, M, Schackert, G, Black, PM. Anti-angiogenic treatment strategies for malignant brain tumors. J Neurooncol. 2000; 50:14963.CrossRefGoogle ScholarPubMed
132. Plate, KH, Breier, G, Weich, HA, Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 1992; 359:8458.CrossRefGoogle ScholarPubMed
133. Stratmann, A, Risau, W, Plate, KH. Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol. 1998; 153:145966.CrossRefGoogle ScholarPubMed
134. Zagzag, D, Hooper, A, Friedlander, DR, et al. In situ expression of angiopoietins in astrocytomas identifies angiopoietin-2 as an early marker of tumor angiogenesis. Exp Neurol. 1999; 159:391400.CrossRefGoogle ScholarPubMed
135. Dhanabal, M, Ramchandran, R, Waterman, MJ, et al. Endostatin induces endothelial cell apoptosis. J Biol Chem. 1999; 274:117216.CrossRefGoogle ScholarPubMed
136. Griscelli, F, Li, H, Bennaceur-Griscelli, A, et al. Angiostatin gene transfer: inhibition of tumor growth in vivo by blockage of endothelial cell proliferation associated with a mitosis arrest. Proc Natl Acad Sci USA. 1998; 95:636772.CrossRefGoogle ScholarPubMed
137. Yokoyama, Y, Dhanabal, M, Griffioen, AW, Sukhatme, VP, Ramakrishnan, S. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res. 2000; 60:21906.Google ScholarPubMed
138. Gorski, DH, Mauceri, HJ, Salloum, RM, et al. Potentiation of the antitumor effect of ionizing radiation by brief concomitant exposures to angiostatin. Cancer Res. 1998; 58:56869.Google ScholarPubMed
139. Singhal, S, Mehta, J. Thalidomide in cancer. BioDrugs. 2001; 15:16372.CrossRefGoogle ScholarPubMed
140. Fine, HA, Figg, WD, Jaeckle, K, et al. Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas. J Clin Oncol. 2000; 18:70815.CrossRefGoogle ScholarPubMed
141. Short, SC, Traish, D, Dowe, A, et al. Thalidomide as an anti-angiogenic agent in relapsed gliomas. J Neurooncol. 2001; 51:415.CrossRefGoogle ScholarPubMed
142. Chang, SM, Lamborn, KR, Malec, M, et al. Phase II study of temozolomide and thalidomide with radiation therapy for newly diagnosed glioblastoma multiforme. Int J Radiat Oncol Biol Phys. 2004; 60:3537.CrossRefGoogle ScholarPubMed
143. Baumann, F, Bjeljac, M, Kollias, SS, et al. Combined thalidomide and temozolomide treatment in patients with glioblastoma multiforme. J Neurooncol. 2004; 2004: 191200.CrossRefGoogle Scholar
144. Horgan, K, Cooke, E, Hallett, MB, Mansel, RE. Inhibition of protein kinase-C mediated signal transduction by tamoxifen. Biochem Pharmacol. 1986; 35:44635.CrossRefGoogle ScholarPubMed
145. Nishizuka, Y. Studies and perspectives of protein kinase-C. Science. 1986; 233:30512.CrossRefGoogle ScholarPubMed
146. Brandes, AA, Ermani, M, Turazzi, S, et al. Procarbazine and High-Dose Tamoxifen as a second-line regimen in recurrent high-grade gliomas: a phase II study. J Clin Oncol. 1999; 17:64550.CrossRefGoogle ScholarPubMed
147. Chamberlain, MC, Kormanik, PA. Salvage Chemotherapy with tamoxifen for recurrent anaplastic astrocytomas. Arch Neurol. 1999; 56:7038.CrossRefGoogle ScholarPubMed
148. Chang, SM, Baker, II FG, Huhn, SI, et al. High dose oral tamoxifen and subcutaneous interferon alpha-2a for recurrent glioma. J Neurooncol. 1998; 37:16976.Google Scholar
149. Couldwell, WT, Weiss, MH, DeGiorgio, CM, et al. Clinical and radiographic response in a minority of patients with recurrent malignant gliomas treated with high-dose tamoxifen. Neurosurgery. 1993; 32:48590.CrossRefGoogle Scholar
150. Mastronardi, L, Puzzilli, F, Couldwell, WT, Osman, FJ, Lunardi, P. Tamoxifen and carboplatin combinational treatment of high-grade gliomas. J Neurooncol. 1998; 38:5968.CrossRefGoogle ScholarPubMed
151. Muanza, T, Shenouda, G, Souhami, L, et al. High dose tamoxifen and radiotherapy in patients with glioblastoma multiforme: a phase IB study. Can J Neurol Sci. 2000; 27:3026.CrossRefGoogle ScholarPubMed
152. Vertosick, FT, Selker, RG, Pollack, IF, Arena, V. The treatment of intracranial malignant gliomas using orally administered tamoxifen therapy: preliminary results in a series of « failed » patients. Neurosurgery. 1992; 30:897903.Google Scholar
153. Bredel, M, Pollack, IF, Freund, JM, Hamilton, AD, Sebti, SM. Inhibition of Ras and related G-Proteins as a therapeutic strategy for blocking malignant glioma growth. Neurosurgery. 1998; 43:12432.CrossRefGoogle ScholarPubMed
154. Bredel, M, Pollack, IF. The p21-Ras signal transduction pathway and growth regulation in human high-grade gliomas. Brain Res Rev. 1999; 29:23249.CrossRefGoogle ScholarPubMed
155. Pollack, IF, Bredel, M, Erff, M, Hamilton, AD, Sebti, SM. Inhibition of Ras and related guanosine triphosphate-dependent proteins as a therapeutic strategy for blocking malignant glioma growth: II-preclinical studies in a nude mouse model. Neurosurgery 1999; 45:120815.CrossRefGoogle Scholar
156. Curran, WJ Jr, Scott, CB, Horton, J et al. Recursive partitioning analysis of prognostic factors in three Radiation Therapy Oncology Group malignant glioma trials. J Natl Cancer Inst. 1993; 85:70410.CrossRefGoogle ScholarPubMed
157. Cairncross, JG, Ueki, K, Zlatescu, MC, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst. 1998; 90:14739.CrossRefGoogle ScholarPubMed
158. Hegi, ME, Diserens, AC, Gorlia, T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005; 352:9971003.CrossRefGoogle ScholarPubMed
159. Zhang, W, Yamada, H, Sakai, N, Niikawa, S, Nozawa, Y. Enhancement of radiosensitivity by tamoxifen in C6 Glioma Cells. Neurosurgery. 1992; 31:72530.Google ScholarPubMed