Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-09T21:25:48.371Z Has data issue: false hasContentIssue false

Insulin and Serum-Stimulated Hexose Transport do not Change in Type II (Non Insulin Dependent) Diabetic Cultured Fibroblasts during in Vitro Aging

Published online by Cambridge University Press:  29 November 2010

Ralph J. Germinario
Affiliation:
Lady Davis Institute for Medical Research, Sir Mortimer B. Davis — Jewish General Hospital, Montreal, Quebec

Abstract

Cultured Type II Diabetic Fibroblasts displayed no in vitro age-related changes in insulin - or serum-stimulated hexose transport. Additionally, the use of a dexamethasone amplified response protocol allowing use of near physiological concentrations of insulin (6.7 nM) also showed no in vitro age-related change in insulin-stimulated hexose transport in these cultured Type II Diabetic fibroblasts. The data indicate that Type II Diabetic fibroblasts express no differential in response to insulin or serum during aging in vitro.

Résumé

Des fibroblastes diabétiques de Type II en milieu de culture ne démontrent, in vitro, pas de changements reliés à l'àge dans l'insuline ou dans le transport de l'hexose stimulé par s'usage d'un protocole de réponse amplifié de dexaméthasone permettant l'usage de concentrations quasi-physiologiques d'insuline (6.7 nM) ne démontre toujours pas, in vitro, de changements reliés à l'àge dans le transport de l'hexose stimulé par insuline dans ces fibroblastes diabétiques de Type II en milieu de culture. Les données indiquent que les fibroblastes diabétiques de Type II réagissent sans différence à l'insuline ou au sérum durant le vieillissement in vitro.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chiles, R, Tzagournis, M: Excessive serum insulin response to oral glucose in obesity and mild diabetes. Diabetes 19: 458464, 1970.CrossRefGoogle ScholarPubMed
Eagle, H: Amino acid metabolism in mammalian cell cultures. Science 130: 432437, 1959.CrossRefGoogle ScholarPubMed
Gelehrter, T, Dilworth, V, Valka, B, Mcdonald, R, Schorry, E: Insulin binding and action in fibroblasts from patients with maturity-onset diabetes of the young. Diabetes 30: 940946, 1981.CrossRefGoogle ScholarPubMed
Germinario, RJ, Mcquillan, A, Oliveira, M, S, Manuel: Enhanced insulin stimulation of sugar transport and DNA synthesis by glucocorticoids in cultured human skin fibroblasts. Arch Biochem Blophys 226: 498505, 1983.CrossRefGoogle ScholarPubMed
Germinario, RJ, Oliveira, M: Stimulation of hexose transport in cultured human skin fibroblasts by insulin. J Cell Physiol 99: 313318, 1979.CrossRefGoogle ScholarPubMed
Germinario, RJ, Oliveira, M, Leung, H: Saturable and non-saturable hexose uptake in cultured human skin fibroblasts. Can J Biochem 56: 8088, 1978.CrossRefGoogle Scholar
Germinario, RJ, Oliveira, M, Manuel, S: Insulin and serum-stimulated Hexose transport in in vitro aged cultured human skin fibroblasts. Can J on Aging 5: 157164, 1986.CrossRefGoogle Scholar
Germinario, RJ, Oliveira, M, Manuel, S, Taylor, M: Characteristics of normal and maturity-onset diabetic (Type II diabetes) cell cultures: Lifespans and DNA synthetic capabilities. Gerontology 13: 148157, 1986.CrossRefGoogle Scholar
Germinario, RJ, Oliveira, M, Manuel, S, Taylor, M: Hexose transport regulation in cultured fibroblasts derived from normal and type II diabetic patients. Clinical and Investigative Medicine 10: 295302, 1987.Google ScholarPubMed
Germinario, RJ, Oliveira, M, Taylor, M: Studies on the effects of in vitro ageing on saturable and non-saturable sugar uptake in cultured human skin fibroblasts. Gerontology 26: 181187, 1980.CrossRefGoogle Scholar
Germinario, RJ, Ozaki, S, Kalant, N: Regulation of insulin binding and stimulation of sugar transport in cultured human skin fibroblasts by sugar levels in the culture medium. Arch Biochem Biophys 234: 559566, 1984.CrossRefGoogle ScholarPubMed
Goldstein, S, Littlefield, JW: Effect of insulin on the conversion of glucose-14C to14C02 by normal and diabetic fibroblasts in culture. Diabetes 18: 545549, 1969.CrossRefGoogle Scholar
Goldstein, S, Moerman, EJ, Soeldner, JS, Gleason, RE, Barnett, DM: Diabetes mellitus and genetic prediabetes: Decreased replicative capacity of cultured skin fibroblasts. J Clin Invest 63: 358370, 1979.CrossRefGoogle ScholarPubMed
Goldstein, S, Niewiarowski, S, Singal, DP: Pathological implications of cell ageing in vitro. Fed Proc 34: 5663, 1975.Google Scholar
Green, H, Meuth, M: An established pre-adipose cell line and its differentiation in culture. Cell 3: 127133, 1974.CrossRefGoogle ScholarPubMed
Horner, H, Munck, A, Lienhard, G.Dexamethasone causes translocation of glucose transporters from the plasma membrane to an intracellular site in human fibroblasts. J of Biol Chem 262: 17696–11702, 1987CrossRefGoogle Scholar
Howard, BV, Fields, RM, Mott, DM, Savage, PJ, Nagulesparan, M, Bennett, P: Diabetes and cell growth: Lack of differences in growth characteristics of fibroblasts from diabetic and non-diabetic Pima Indians. Diabetes 29: 119124, 1980.CrossRefGoogle Scholar
Howard, BV, Hidaka, H, Ishibashi, F, Fields, RM, Bennett, PH: Type II diabetes and insulin resistance: Evidence for lack of inherent cellular defects in insulin sensitivity. Diabetes 30: 562567, 1981.CrossRefGoogle ScholarPubMed
Kahlenberg, A: Lack of stereospecificity of glucose binding to human erythrocyte membrane protein upon reduction with sodium borohydride. Biochem Biophys Res Commun 36: 690695, 1969.CrossRefGoogle ScholarPubMed
Lemmon, S, Sens, DA, Buse, MG: Insulin stimulation of glucose transport and metabolism in the human Wilms' tumor-derived myoblast cell line: Modulation of hormone effects by glucose deprivation. J Cell Physiol 125: 456464, 1985.CrossRefGoogle ScholarPubMed
Lowry, OH, Rosebrough, NJ, Farr, AL, Randall, RJ: Protein measurement with the Folin phenol reagent. J Cell Chem 193: 265275, 1951.Google ScholarPubMed
Lumpkin, CK, McClung, K, Pereira-smith, O, Smith, JR: Existence of high abundance antiproliferative MRNA's in senescent human diploid fibroblasts. Science 232: 393395, 1986.CrossRefGoogle ScholarPubMed
Olefsky, JM: The insulin receptors: its role in insulin resistance of obesity and diabetes. Diabetes 25: 11541162, 1976.CrossRefGoogle ScholarPubMed
Prince, MJ, Tsai, P, Olefsky, JM: Insulin binding internalization, and insulin receptor regulation in fibroblasts from Type II, non-insulin dependent diabetic subjects. Diabetes 30: 596600, 1981.CrossRefGoogle ScholarPubMed
Reaven, C, Miller, R: Study of the relationship between glucose and insulin responses to an oral glucose load in man. Diabetes 17: 560569, 1968.CrossRefGoogle Scholar
Rechler, MM & Nissley, SP: The nature and regulation of the receptors for insulinlike growth factors. Annual Review of Physiology 47: 425, 1985.CrossRefGoogle Scholar
Rosenbloom, AL, Rosenbloom, EK: Insulin-dependent childhood diabetes: Normal viability of cultured fibroblasts. Diabetes 27: 338341, 1978.CrossRefGoogle ScholarPubMed
Rowe, DW, Starman, BJ, Fujimoto, WY, Willans, RH: Abnormalities in proliferation and protein synthesis in skin fibroblast cultures from patients with diabetes mellitus. Diabetes 26: 284290, 1977.CrossRefGoogle ScholarPubMed
Van Putten, JPM, Krans, HMJ: Glucose as a regulator of insulin hexose uptake in 3T3 adipocytes. J Biol Chem 260: 79968001, 1985.CrossRefGoogle Scholar
Vracko, R, Benditt, EP: Manifestations of diabetes mellitus - their possible relationships to underlying cell defect. Am J Pathol 75: 204221, 1974.Google ScholarPubMed
Vracko, R, Mcfarland, BH: Lifespans of diabetic and non-diabetic fibroblasts in vitro. Exp Cell Res 129: 345350, 1980.CrossRefGoogle ScholarPubMed
Wang, E: A 57,000 mol-wt protein uniquely present in nonproliferating cells and senescent human fibroblasts. J Cell Biology 100: 545551, 1985.CrossRefGoogle Scholar