Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-17T22:14:39.675Z Has data issue: false hasContentIssue false

Invariant ideals and their applications to the turnpike theory

Published online by Cambridge University Press:  12 January 2023

Musa Mammadov
Affiliation:
School of Information Technology, Deakin University, Geelong, VIC 3125, Australia e-mail: musa.mammadov@deakin.edu.au
Piotr Szuca*
Affiliation:
Institute of Mathematics, University of Gdańsk, ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

Abstract

In this paper, the turnpike property is established for a nonconvex optimal control problem in discrete time. The functional is defined by the notion of the ideal convergence and can be considered as an analogue of the terminal functional defined over infinite-time horizon. The turnpike property states that every optimal solution converges to some unique optimal stationary point in the sense of ideal convergence if the ideal is invariant under translations. This kind of convergence generalizes, for example, statistical convergence and convergence with respect to logarithmic density zero sets.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourbaki, N., Éléments de mathématique. Topologie générale. Chapitres 1 à 4. Reprint of the 1971 original, Springer, Berlin, 2007 (in French).Google Scholar
Carlson, D. A., Haurie, A. B., and Leizarowitz, A., Infinite horizon optimal control: deterministic and stochastic systems. 2nd ed., Springer, Berlin, 1991.CrossRefGoogle Scholar
Cartan, H., Filtres et ultrafiltres . C. R. Acad. Sci. Paris 205(1937), 777779.Google Scholar
Cass, D. and Shell, K., The structure and stability of competitive dynamical systems . J. Econ. Theory 12(1976), 3170.CrossRefGoogle Scholar
Činčura, J., Šalát, T., Sleziak, M., and Toma, V., Sets of statistical cluster points and $\mathbf{\mathcal{I}}$ -cluster points . Real Anal. Exchange 30(2004/05), no. 2, 565580.CrossRefGoogle Scholar
Damm, T., Grüne, L., Stieler, M., and Worthmann, K., An exponential turnpike theorem for averaged optimal control . SIAM J. Control Optim. 52(2014), no. 3, 19351957.CrossRefGoogle Scholar
Das, P., Dutta, S., Mohiuddine, S. A., and Alotaibi, A., $A$ -statistical cluster points in finite dimensional spaces and application to turnpike theorem . Abstr. Appl. Anal. (2014). https://doi.org/10.1155/2014/354846 Google Scholar
Devaney, R. L., An introduction to chaotic dynamical systems, Benjamin–Cummings, Menlo Park, CA, 1986.Google Scholar
Dorfman, R., Samuelson, P. A., and Solow, R. M., Linear programming and economic analysis, McGraw-Hill, New York, 1958.Google Scholar
Fast, H., Sur la convergence statistique . Colloq. Math. 2(1951), 241244 (in French).CrossRefGoogle Scholar
Filipów, R. and Szuca, P., Density versions of Schur’s theorem for ideals generated by submeasures . J. Combin. Theory Ser. A 117(2010), no. 7, 943956.CrossRefGoogle Scholar
Fridy, J. A., Statistical limit points . Proc. Amer. Math. Soc. 118(1993), no. 4, 11871192.CrossRefGoogle Scholar
Ivanov, A. F., Mammadov, M. A., and Trofimchuk, S. I., Global stabilization in nonlinear discrete systems with time-delay . J. Glob. Optim. 56(2013), no. 2, 251263.CrossRefGoogle Scholar
Just, W. and Krawczyk, A., On certain Boolean algebras $\mathbf{\mathcal{P}}\left(\omega \right)/I$ . Trans. Amer. Math. Soc. 285(1984), no. 1, 411429.Google Scholar
Kojman, M., Van der Waerden spaces . Proc. Amer. Math. Soc. 130(2002), no. (3), 631635 (electronic).CrossRefGoogle Scholar
Kolokoltsov, V. and Yang, W., Turnpike theorems for Markov games . Dyn. Games Appl. 2(2012), no. 3, 294312.CrossRefGoogle Scholar
Kostyrko, P., Šalát, T., and Wilczyński, W., $\mathbf{\mathcal{I}}$ -convergence . Real Anal. Exchange 26(2000/01), no. 2, 669685.CrossRefGoogle Scholar
Leizarowitz, A., Optimal trajectories on infinite horizon deterministic control systems . Appl. Math. Optim. 19(1989), 1132.CrossRefGoogle Scholar
Leonetti, P. and Caprio, M., Turnpike in infinite dimension . Can. Math. Bull. 65(2022), no. 2, 416430.CrossRefGoogle Scholar
Lyapunov, A. N., Asymptotical optimal paths for convex mappings . In: Optimal models in system analysis. Vol. 9, VNIISI, Moskow, 1983, pp. 7480.Google Scholar
Magill, M. J. P. and Scheinkman, J. A., Stability of regular equilibria and the correspondence principle for symmetric variational problems . Int. Econ. Rev. 20(1979), no. 2, 297315.CrossRefGoogle Scholar
Makarov, V. L. and Rubinov, A. M., Mathematical theory of economic dynamics and equilibria, Springer, New York, 1977.CrossRefGoogle Scholar
Mamedov, M. A., Asymptotical optimal paths in models with environment pollution being taken into account . Optimization (Novosibirsk) 36(1985), no. 53, 101112 (in Russian).Google Scholar
Mamedov, M. A., Turnpike theorems in continuous systems with integral functionals . Russian Acad. Sci. Dokl. Math. 45(1992), no. 2 (English translation).Google Scholar
Mamedov, M. A. and Pehlivan, S., Statistical cluster points and turnpike theorem in nonconvex problems . J. Math. Anal. Appl. 256(2001), no. 2, 686693.CrossRefGoogle Scholar
Mammadov, M. A., Turnpike theorem for an infinite horizon optimal control problem with time delay . SIAM J. Control. Optim. 52(2014), no. 1, 420438.CrossRefGoogle Scholar
Mazur, K., ${F}_{\sigma }$ -ideals and ${\omega}_1{\omega}_1^{\ast }$ -gaps in the Boolean algebras $P\left(\omega \right)/I$ . Fundam. Math. 138(1991), no. 2, 103111.CrossRefGoogle Scholar
McKenzie, L. W., Turnpike theory . Econometrica 44(1976), no. 5, 841865.CrossRefGoogle Scholar
Montrucchio, L., A turnpike theorem for continuous-time optimal-control models . J. Econ. Dyn. Control 19(1995), no. 3, 599619.CrossRefGoogle Scholar
Nuray, F. and Ruckle, W. H., Generalized statistical convergence and convergence free spaces . J. Math. Anal. Appl. 245(2000), no. 2, 513527.CrossRefGoogle Scholar
Pehlivan, S. and Mamedov, M. A., Statistical cluster points and turnpike . Optimization 48(2000), no. 1, 91106.CrossRefGoogle Scholar
Rockafellar, R. T., Saddle points of Hamiltonian systems in convex problems of Lagrange . J. Optim. Theory Appl. 12(1973), no. 4, 367390.CrossRefGoogle Scholar
Rockafellar, R. T., Saddle points of Hamiltonian systems in convex Lagrange problems having a nonzero discount rate . J. Econ. Theory 12(1976), no. 1, 71113.CrossRefGoogle Scholar
Scheinkman, J. A., On optimal steady states of $n$ -sector growth models when utility is discounted . J. Econ. Theory 12(1976), 1130.CrossRefGoogle Scholar
von Neumann, J., A model of general economic equilibrium . Rev. Econ. Stud. 13(1945–46), 19.CrossRefGoogle Scholar
Zaslavski, A. J., Turnpike properties in the calculus of variations and optimal control, Springer, New York, 2006.Google Scholar
Zaslavski, A. J., A turnpike property of approximate solutions of an optimal control problem arising in economic dynamics . Dyn. Syst. Appl. 20(2011), nos. 2–3, 395422.Google Scholar
Zaslavski, A. J., Necessary and sufficient conditions for turnpike properties of solutions of optimal control systems arising in economic dynamics . Dyn. Contin. Discrete and Impuls. Syst. Ser. B Appl. Algorithms 20(2013), no. 4, 391420.Google Scholar
Zaslavski, A. J., Turnpike properties of approximate solutions in the calculus of variations without convexity assumptions . Commun. Appl. Nonlinear Anal. 20(2013), no. 1, 97108.Google Scholar