Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-17T22:56:59.543Z Has data issue: false hasContentIssue false

On the condition number of a Kreiss matrix

Published online by Cambridge University Press:  29 May 2023

Stéphane Charpentier*
Affiliation:
Institut de Mathématiques de Marseille, UMR 7373, Aix-Marseille Université, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France e-mail: karine.isambard@univ-amu.fr
Karine Fouchet
Affiliation:
Institut de Mathématiques de Marseille, UMR 7373, Aix-Marseille Université, 39 rue F. Joliot Curie, 13453 Marseille Cedex 13, France e-mail: karine.isambard@univ-amu.fr
Rachid Zarouf
Affiliation:
Laboratoire ADEF, Aix-Marseille Université, Campus Universitaire de Saint-Jérôme, 52 Avenue Escadrille Normandie Niemen, 13013 Marseille, France e-mail: rachid.zarouf@univ-amu.fr

Abstract

In 2005, N. Nikolski proved among other things that for any $r\in (0,1)$ and any $K\geq 1$, the condition number $CN(T)=\Vert T\Vert \cdot \Vert T^{-1}\Vert $ of any invertible n-dimensional complex Banach space operators T satisfying the Kreiss condition, with spectrum contained in $\left \{ r\leq |z|<1\right \}$, satisfies the inequality $CN(T)\leq CK(T)\Vert T \Vert n/r^{n}$ where $K(T)$ denotes the Kreiss constant of T and $C>0$ is an absolute constant. He also proved that for $r\ll 1/n,$ the latter bound is asymptotically sharp as $n\rightarrow \infty $. In this note, we prove that this bound is actually achieved by a family of explicit $n\times n$ Toeplitz matrices with arbitrary singleton spectrum $\{\lambda \}\subset \mathbb {D}\setminus \{0\}$ and uniformly bounded Kreiss constant. Independently, we exhibit a sequence of Jordan blocks with Kreiss constants tending to $\infty $ showing that Nikolski’s inequality is still asymptotically sharp as K and n go to $\infty $.

Type
Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Charpentier was partly supported by the grant ANR-17-CE40-0021 of the Agence Nationale pour la Recherche ANR. Zarouf acknowledges financial support by the Agence Nationale pour la Recherche grant ANR-18-CE40-0035.

References

Bonsall, F. and Walsh, D., Symbols for trace class Hankel operators with good estimates for norms . Glasg. Math. J. 28(1986), 4754.CrossRefGoogle Scholar
Charpentier, S., Fouchet, K., Szehr, O., and Zarouf, R., Condition numbers of matrices with given spectrum. Anal. Math. Phys. 9(2019), no. 3, 971990.CrossRefGoogle Scholar
Eidelman, A., Eigenvalues and condition numbers of random matrices . SIAM J. Matrix Anal. Appl. 9(1988), no. 4, 543560.CrossRefGoogle Scholar
Gluskin, E., Meyer, M., and Pajor, A., Zeros of analytic functions and norms of inverse matrices . Israel J. Math. 87(1994), 225242.CrossRefGoogle Scholar
Kreiss, H.-O., Über die Stabilitätsdefinition für Differenzengleichungen die partielle Differentialgleichungen approximieren . BIT 2(1962), 153181.CrossRefGoogle Scholar
Nikolski, N., Treatise on the shift operator, Springer, Berlin, 1986 (Translated from Russian, Lekzii ob operatore sdviga, “Nauka”, Moskva, 1980).CrossRefGoogle Scholar
Nikolski, N., Operators, function, and systems: an easy reading. Vol. 1, Monographs and Surveys, American Mathematical Society, Providence, RI, 2002.Google Scholar
Nikolski, N., Condition numbers of large matrices and analytic capacities . St. Petersburg Math. J. 17(2006), 641682.CrossRefGoogle Scholar
Nikolski, N., Sublinear dimension growth in the Kreiss matrix theorem . Algebra i Analiz. 25(2013), no. 3, 351.Google Scholar
Quarteroni, A., Sacco, R., and Saleri, F., Numerical mathematics, Springer, Berlin, 2000.Google Scholar
Queffélec, H., Sur un théorème de Gluskin–Meyer–Pajor . C. R. Acad. Sci. Paris Sér. 1 Math. 317(1993), 155158.Google Scholar
Queffélec, H., Norm of the inverse of a matrix; solution to a problem of Schäffer . In: Harmonic analysis from the Pichorides viewpoint, Publications Mathématiques d’Orsay, University of Paris XI, Orsay, 1995, pp. 6887.Google Scholar
Richtmyer, R. D. and Morton, K. W., Difference methods for initial-value problems, 2nd ed., Wiley, New York–London–Sydney, 1967.Google Scholar
Schäffer, J. J., Norms and determinants of linear mappings . Math. Z. 118(1970), 331339.CrossRefGoogle Scholar
Smale, S., On the efficiency of algorithms of analysis . Bull. Amer. Math. Soc. (N.S.) 13(1985), 87121.CrossRefGoogle Scholar
Sod, G. A., Numerical methods in fluid dynamics, Cambridge University Press, Cambridge, 1985.CrossRefGoogle Scholar
Spijker, M. N., Tracogna, S., and Welfert, B., About the sharpness of the stability estimates in the Kreiss matrix theorem . Math. of Comp. 72(2003), 697713.CrossRefGoogle Scholar
Szehr, O., Eigenvalue estimates for the resolvent of a non-normal matrix. J. Spectr. Theory 4(2014), no. 4, 783813.CrossRefGoogle Scholar
Szehr, O. and Zarouf, R., Maximum of the resolvent over matrices with given spectrum . J. Funct. Anal. 272(2017), no. 2, 819847.CrossRefGoogle Scholar
Szehr, O. and Zarouf, R., Explicit counterexamples to Schäffer’s conjecture . J. Math. Pures Appl. 146(2021), no. 9, 130.CrossRefGoogle Scholar
van Dorsselaer, J. L. M., Kraaijevanger, J. F. B. M., and Spijker, M. N., Linear stability analysis in the numerical solution of initial value problems . Acta Numer. (1993), 199237.CrossRefGoogle Scholar
Vitse, P., Functional calculus under Kreiss type conditions . Math. Nachr. 278(2005), no. 15, 18111822.CrossRefGoogle Scholar
Zarouf, R., Toeplitz condition numbers as an ${\mathrm{H}}^{\infty }$ interpolation problem . J. Math. Sci. 156(2009), no. 5, 819823.CrossRefGoogle Scholar