Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-08T10:23:00.489Z Has data issue: false hasContentIssue false

Positive definite functions and cut-off for discrete groups

Published online by Cambridge University Press:  22 June 2020

Amaury Freslon*
Affiliation:
Université Paris-Saclay, CNRS, Laboratoire de Mathématiques d’Orsay, 91405Orsay, France

Abstract

We consider the sequence of powers of a positive definite function on a discrete group. Taking inspiration from random walks on compact quantum groups, we give several examples of situations where a cut-off phenomenon occurs for this sequence, including free groups and infinite Coxeter groups. We also give examples of absence of cut-off using free groups again.

Type
Article
Copyright
© Canadian Mathematical Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arano, Y., Isono, Y. and Marrakchi, A., Ergodic theory of affine isometric actions on Hilbert spaces. Preprint, 2019https://arxiv.org/abs/1911.04272.Google Scholar
Bekka, B., Harpe, P. and Valette, A., Kazhdan’s Property (T). New Mathematical Monographs 11, Cambridge University Press, Cambridge, 2008.CrossRefGoogle Scholar
Bozejko, M., Januszkiewicz, T. and Spatzier, R., Infinite Coxeter groups do not have Kazhdan’s property. J. Operator Theory 19(1988), 6367.Google Scholar
Cherix, P.-A., Cowling, M., Jolissaint, P., Julg, P. and Valette, A., Groups with the Haagerup property–Gromov’s a-(T)-menability. Progress in Mathematics 197, Birkhäuser, Cham, 2001.Google Scholar
Cohen, J., Cogrowth and amenability of discrete groups J. Funct. Anal. 48(1982), 301309.CrossRefGoogle Scholar
Harpe, P., Topics in geometric group theory. University of Chicago Press, Chicago, 2000.Google Scholar
Diaconis, P., The cutoff phenomenon in finite Markov chains. Proc. Natl. Acad. Sci. 93(1996), 16591664.CrossRefGoogle ScholarPubMed
Dreesen, D., Equivariant and non-equivariant uniform embeddings into products and Hilbert spaces. Ph.D thesis, Université de Neuchâtel (2011).Google Scholar
Dreesen, D., Hilbert space compression for free products and HNN-extensions. J. Funct. Anal. 261(2011), 35853611.CrossRefGoogle Scholar
Eymard, P., L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France 92(1964), 181236.CrossRefGoogle Scholar
Fendler, G., Simplicity of the reduced C*-algebras of certain Coxeter groups. Illinois J. Math. 47(2003), 883897.CrossRefGoogle Scholar
Freslon, A., Cut-off phenomenon for random walks on free orthogonal quantum groups. Probab. Theory Related Fields 174(2019), 731760.CrossRefGoogle Scholar
Godement, R., Les fonctions de type positif et la théorie des groupes. Trans. Amer. Math. Soc. 63(1948), 184.Google Scholar
Guentner, E. and Kaminker, J., Exactness and uniform embeddability of discrete groups. J. London Math. Soc. 70(2004), 703718.CrossRefGoogle Scholar
Haagerup, U., An example of a non nuclear C*-algebra, which has the metric approximation property. Invent. Math. 50(1978), 279293.CrossRefGoogle Scholar
Jolissaint, P., Rapidly decreasing functions in reduced C*-algebras of groups. Trans. Amer. Math. Soc. 317(1990), 167196.Google Scholar
Ollivier, Y., Cogrowth and spectral gap of generic groups. Ann. Inst. Fourier 55(2005), 289317.CrossRefGoogle Scholar
Shalom, Y., Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group. Ann. Math. 152(2000), 113182.CrossRefGoogle Scholar
Stromberg, K., Probabilities on a compact group. Trans. Amer. Math. Soc. 94(1960), 295309.CrossRefGoogle Scholar
Takesaki, M., Theory of operator algebras I. Encyclopaedia of Mathematical Sciences 124, Springer, Berlin, 2002.CrossRefGoogle Scholar