Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-24T21:06:11.413Z Has data issue: false hasContentIssue false

Pulmonary artery coarctation repair in univentricular heart: indications and optimal timing

Published online by Cambridge University Press:  24 July 2023

Koji Miwa*
Affiliation:
Department of Cardiovascular Surgery, Osaka Women’s and Children’s Hospital, Osaka, Japan
Shigemitsu Iwai
Affiliation:
Department of Cardiovascular Surgery, Osaka Women’s and Children’s Hospital, Osaka, Japan
Tomomitsu Kanaya
Affiliation:
Department of Cardiovascular Surgery, Osaka Women’s and Children’s Hospital, Osaka, Japan
Shota Kawai
Affiliation:
Department of Cardiovascular Surgery, Osaka Women’s and Children’s Hospital, Osaka, Japan
*
Corresponding author: K. Miwa; Email: komiwa0712@gmail.com

Abstract

Background:

To analyse surgical outcomes of pulmonary artery coarctation in univentricular hearts, focusing on surgical indications and optimal timing.

Methods:

We retrospectively reviewed 49 patients with pulmonary artery coarctation in univentricular hearts treated at our institution between 1993 and 2022. Twenty-eight patients were diagnosed before first-stage palliation. Of these, 14 underwent systemic-pulmonary shunt only as first-stage palliation (Group 1), and 14 underwent systemic-pulmonary shunt plus surgical pulmonary artery plasty as first-stage palliation (Group 2). Twenty-one patients diagnosed after first-stage palliation underwent surgical pulmonary artery plasty at the time of bidirectional Glenn procedure (Group 3).

Results:

Follow-up period after initial palliation was 6±8 years. The Fontan procedure was successful in 35 patients (71%) aged 28±26 months (range 18–139). Freedom from interstage death (Group 1, 53%; Group 2, 85%; Group 3, 93%) and interstage reintervention (Group 1, 50%; Group 2, 75%; Group 3, 73%) rates were significantly lower in Group 1 (p = 0.01). Five and four patients in Group 1 and Group 3, respectively, needed additional shunts before the bidirectional Glenn procedure. In Group 1, one patient with a non-confluent pulmonary artery achieved hemi-lung Fontan circulation. In Group 2, one patient suffering with a non-confluent pulmonary artery could not achieve Fontan circulation, whereas another patient with pulmonary venous obstruction achieved hemi-lung Fontan circulation.

Conclusions:

Surgical pulmonary artery plasty performed at first-stage palliation improved outcomes of pulmonary artery coarctation in univentricular hearts, particularly when pulmonary artery coarctation had already progressed during the neonatal period or early infancy.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Waldman, JD, Karp, RB, Gittenberger-de Groot, AC, Agarwala, B, Glagov, S. Spontaneous acquisition of discontinuous pulmonary arteries. Ann Thorac Surg 1996; 62: 161168.Google Scholar
Elzenga, NJ, von Suylen, RJ, Frohn-Mulder, I, Essed, CE, Bos, E, Quaegebeur, JM. Juxtaductal pulmonary artery coarctation. An underestimated cause of branch pulmonary artery stenosis in patients with pulmonary atresia or stenosis and a ventricular septal defect. J Thorac Cardiovasc Surg 1990; 100: 416424.Google Scholar
Masuda, M, Kado, H, Shiokawa, Y, et al. Clinical results of the staged Fontan procedure in high-risk patients. Ann Thorac Surg 1998; 65: 17211725.Google Scholar
Shinkawa, T, Yamagishi, M, Shuntoh, K, Miyazaki, T, Hisaoka, T, Yaku, H. Pulmonary arterial reconstruction for pulmonary coarctation in early infancy. Ann Thorac Surg 2007; 83: 188192.CrossRefGoogle ScholarPubMed
Sakamoto, K, Ota, N, Fujimoto, Y, et al. Primary central pulmonary artery plasty for single ventricle with ductal-associated pulmonary artery coarctation. Ann Thorac Surg 2014; 98: 919926.Google Scholar
Brink, J, MacIver, R, Lee, MG, et al. Neonatal pulmonary artery reconstruction during shunting to treat and prevent juxtaductal coarctation. Ann Thorac Surg 2015; 99: 641647.Google Scholar
Kim, HK, Kim, WH, Kim, SC, Lim, C, Lee, CH, Kim, SJ. Surgical strategy for pulmonary coarctation in the univentricular heart. Eur J Cardiothoracic Surg 2006; 29: 100104.Google Scholar
Kotani, Y, Kobayashi, Y, Kadowaki, S, et al. Impact of pulmonary artery coarctation on pulmonary artery growth and definitive repair following modified blalock-taussig shunt. J Thorac Cardiovasc Surg 2022; 163: 16181626.Google Scholar
Lakshminrusimha, S. The pulmonary circulation in neonatal respiratory failure. Clin Perinatol 2012; 39: 655683.Google Scholar
Petrucci, O, Khoury, PR, Manning, PB, Eghtesady, P. Outcomes of the bidirectional Glenn procedure in patients less than 3 months of age. J Thorac Cardiovasc Surg 2010; 139: 562568.CrossRefGoogle ScholarPubMed
Nakata, S, Imai, Y, Takanashi, Y, et al. A new method for the quantitative standardization of cross-sectional areas of the pulmonary arteries in congenital heart diseases with decreased pulmonary blood flow. J Thorac Cardiovasc Surg 1984; 88: 610619.Google Scholar
Godart, F, Qureshi, SA, Simha, A, et al. Effects of modified and classic blalock-taussig shunts on the pulmonary arterial tree. Ann Thorac Surg 1998; 66: 512517.Google Scholar
Zachary, CH, Jacobs, ML, Apostolopoulou, S, Fogel, MA. One-lung Fontan operation: hemodynamics and surgical outcome. Ann Thorac Surg 1998; 65: 171175.Google Scholar
Bacha, EA, Lang, P, Mayer, JE, McElhinney, DB. Connection of discontinuous pulmonary arteries in patients with a superior or total cavopulmonary circulation. Ann Thorac Surg 2008; 86: 19481954.Google Scholar
Ishikawa, S, Takahashi, T, Sato, Y, et al. Growth of the pulmonary arteries after systemic-pulmonary shunt. Ann Thorac Cardiovasc Surg 2001; 7: 337340.Google Scholar
Suzuki, K, Kim, S, Ishigaki, M, et al. Current status of ductal-stenting as the first-stage palliative strategy for congenital heart disease with duct-dependent pulmonary circulation. Pediatr Cardiol Card Surg 2020; 36: 294305.Google Scholar
Yokoyama, U, Minamisawa, S, Quan, H, et al. Chronic activation of the prostaglandin receptor EP4 promotes hyaluronan-mediated neointimal formation in the ductus arteriosus. J Clin Investig 2006; 116: 30263034.Google Scholar
Yokoyama, U. Prostaglandin E-mediated molecular mechanisms driving remodeling of the ductus arteriosus. Ped International 2015; 57: 820827.Google Scholar
Wielenga, G, Dankmeijer, J. Coarctation of the aorta. J Pathol Bacteriol 1968; 95: 265274.Google Scholar
Azakie, A, Merklinger, SL, Williams, WG, Van Arsdell, GS, Coles, JG, Adatia, I. Improving outcomes of the Fontan operation in children with atrial isomerism and heterotaxy syndromes. Ann Thorac Surg 2001; 72: 16361640.Google Scholar
Supplementary material: Image

Miwa et al. supplementary material

Miwa et al. supplementary material 1

Download Miwa et al. supplementary material(Image)
Image 642.4 KB
Supplementary material: Image

Miwa et al. supplementary material

Miwa et al. supplementary material 2

Download Miwa et al. supplementary material(Image)
Image 807.9 KB
Supplementary material: Image

Miwa et al. supplementary material

Miwa et al. supplementary material 3

Download Miwa et al. supplementary material(Image)
Image 3.4 MB
Supplementary material: File

Miwa et al. supplementary material

Miwa et al. supplementary material 4

Download Miwa et al. supplementary material(File)
File 16.2 KB