Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-06T11:02:47.164Z Has data issue: false hasContentIssue false

Behavioural interventions to increase adherence to palivizumab prophylaxis in children with CHD

Published online by Cambridge University Press:  26 April 2024

Elif Erolu*
Affiliation:
Department of Pediatric Cardiology, University of Health Sciences Medical School Kartal Kosuyolu High Speciality Educational and Research Hospital, Istanbul, Turkey
Özgür Kıbrıs
Affiliation:
Faculty of Arts and Social Sciences, Sabancı University, Istanbul, Turkey
Yasemin Tosun
Affiliation:
Faculty of Arts and Social Sciences, Sabancı University, Istanbul, Turkey
Ayse Yildirim
Affiliation:
Department of Pediatric Cardiology, University of Health Sciences Medical School Kartal Kosuyolu High Speciality Educational and Research Hospital, Istanbul, Turkey
Ozge Pamukcu
Affiliation:
Department of Pediatric Cardiology, Maras Necip Fazil City Hospital, Merkez, Turkey
Evic Zeynep Basar
Affiliation:
Department of Pediatric Cardiology, Kocaeli University, Kocaeli, Turkey
Kadir Babaoglu
Affiliation:
Department of Pediatric Cardiology, Kocaeli University, Kocaeli, Turkey
Serdar Epcacan
Affiliation:
Department of Pediatric Cardiology, Van Research and Education Hospital, Van, Turkey
Yasemin Donmez
Affiliation:
Department of Pediatric Cardiology, Van Research and Education Hospital, Van, Turkey
Dilek Giray
Affiliation:
Department of Pediatric Cardiology, Van Research and Education Hospital, Van, Turkey
Pınar Dervisoglu
Affiliation:
Department of Pediatric Cardiology, Sakarya University, sakarya, Turkey
Onur Tascı
Affiliation:
Department of Pediatric Cardiology, Sivas Numune Hospital, Sivas, Turkey
*
Corresponding author: E. Erolu; Email: eliferolu@yahoo.com

Abstract

Objectives:

Adherence to palivizumab prophylaxis programmes is crucial to protect infants with CHD against respiratory syncytial virus infections. We analysed the effectiveness of two nudge interventions in increasing adherence.

Methods:

Our study included 229 infants, and their caregivers, from five centers in Turkey in the 2020–2021 respiratory syncytial virus season. We randomly allocated caregivers to a control and two intervention groups. Caregivers in all groups were informed about the prophylaxis programme and provided a schedule. Additionally, caregivers in Intervention 1 were called two days before appointments (default bias) and were asked to plan the appointment day (implementation intention), whereas caregivers in Intervention 2 received biweekly text messages informing them about the programme’s benefits (availability bias) and current adherence rate (social norm).

Results:

Caregivers in Intervention 1 had a significantly higher adherence rate than Control (97.3% versus 90.9%) (p = 0.014). Both interventions had a significant effect on participants in their first prophylaxis season (p = 0.031, p = 0.037). Families where the father was employed had a 14.2% higher adherence rate (p = 0.001). Every additional child was associated with a 2.2% decrease in adherence rate (p = 0.02). In control, ICU admission history was associated with an 18.8% lower adherence rate (p = 0.0001), but this association disappeared in intervention groups.

Conclusion:

This is the first prospective interventional study which, in the context of palivizumab prophylaxis, analyses the effectiveness of nudge interventions based on established cognitive biases by comparing randomly generated intervention and control groups. We found that default bias and implementation intention have significant effects on adherence.

Clinical trial, in the name and number “Adherence of palivizumab prophylaxis, NCT05778240” registered retrospectively. https://clinicaltrials.gov/ct2/show/NCT05778240.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Joshi, M, Tulloh, RM. Respiratory virus prophylaxis in congenital heart disease. Future Cardiol 2018; 14: 417425. DOI: 10.2217/fca-2017-0096.CrossRefGoogle ScholarPubMed
Medrano, C, Garcia-Guereta, L, Grueso, J, et al. CIVIC study group from the spanish society of pediatric cardiology and congenital heart disease. Respiratory infection in congenital cardiac disease. Hospitalizations in young children in Spain during 2004 and 2005: the CIVIC epidemiologic study. Cardiol Young 2007; 17: 360371. DOI: 10.1017/S104795110700042X.CrossRefGoogle Scholar
Stewart, DL, Ryan, KJ, Seare, JG, Pinsky, B, Becker, L, Frogel, M. Association of RSV-related hospitalization and non-compliance with Palivizumab among commercially insured infants: a retrospective claims analysis. BMC Infect Dis 2013; 13: 334. DOI: 10.1186/1471-2334-13-334.CrossRefGoogle ScholarPubMed
Forbes, ML, Kumar, VR, Yogev, R, Wu, X, Robbie, GJ, Ambrose, CS. Serum Palivizumab level is associated with decreased severity of respiratory syncytial virus disease in high-risk infants. Hum Vaccin Immunother 2014; 10: 27892794. DOI: 10.4161/hv.29635.CrossRefGoogle ScholarPubMed
Chan, P, Li, A, Paes, B, et al. Adherence to Palivizumab for respiratory syncytial virus prevention in the Canadian registry of Palivizumab. Pediatr Infect Dis J 2015; 34: e290e297. DOI: 10.1097/INF.0000000000000922.CrossRefGoogle ScholarPubMed
Elhalik, M, El-Atawi, K, Dash, SK, et al. Palivizumab prophylaxis among infants at increased risk of hospitalization due to respiratory syncytial virus infection in UAE: a hospital-based study. Can Respir J 2019; 2019: 2986286–8. DOI: 10.1155/2019/2986286.CrossRefGoogle ScholarPubMed
Thaler, RH, Sunstein, CR. Nudge: Improving Decisions About Health, Wealth, and Happiness. Yale University Press, New Haven, 2008.Google Scholar
Samuelson, W, Zeckhauser, R. Status quo bias in decision making. J Risk Uncertainty 1988; 1: 759.CrossRefGoogle Scholar
Madrian, BC, Shea, DF. The power of suggestion: inertia in 401 (k) participation and savings behavior. Q J Econ 2001; 116: 11491187.CrossRefGoogle Scholar
Gollwitzer, PM, Sheeran, P. Implementation intentions and goal achievement: a meta-analysis of effects and processes. Adv Exp Soc Psychol 2006; 38: 69119.CrossRefGoogle Scholar
Schultz, PW, Nolan, JM, Cialdini, RB, Goldstein, NJ, Griskevicius, V. The constructive, destructive, and reconstructive power of social norms. Psychol Sci 2007; 18: 429434.CrossRefGoogle ScholarPubMed
Nickerson, DW, Rogers, T. Do you have a voting plan? Implementation intentions, voter turnout, and organic plan making. Psychol Sci 2010; 21: 194199.CrossRefGoogle Scholar
Sunstein, CR. Nudges that fail. Behav Public Policy 2017; 1: 425.CrossRefGoogle Scholar
Daugherty, SL, Blair, H, Furniss, EP, et al. Implicit gender bias and the use of cardiovascular tests among cardiologists. J Am Heart Assoc 2017; 6: e006872. DOI: 10.1161/JAHA.117.006872.10.1161/JAHA.117.006872CrossRefGoogle ScholarPubMed
Matlock, DD, Jones, J, Nowels, CT, Jenkins, A, Allen, LA, Kutner, JS. Evidence of cognitive bias in decision making around implantable-cardioverter defibrillators: a qualitative framework analysis. J Card Fail 2017; 23: 794799. DOI: 10.1016/j.cardfail.2017.03.008.CrossRefGoogle ScholarPubMed
Ryan, A, Duignan, S, Kenny, D, McMahon, CJ. Decision making in paediatric cardiology. Are we prone to heuristics, biases and traps? Pediatr Cardiol 2018; 39: 160167. DOI: 10.1007/s00246-017-1742-2.CrossRefGoogle ScholarPubMed
Adusumalli, S, Aragam, G, Patel, M. A nudge towards cardiovascular health: applications of behavioral economics for primary and secondary cardiovascular prevention. Curr Treat Options Cardio Med 2020; 22: 24. DOI: 10.1007/s11936-020-00824.10.1007/s11936-020-00824-yCrossRefGoogle Scholar
Chapman, GB, Li, M, Colby, H, Yoon, H. Opting in vs opting out of influenza vaccination. JAMA 2010; 304: 4344. DOI: 10.1001/jama.2010.892.10.1001/jama.2010.892CrossRefGoogle ScholarPubMed
Milkman, KL, Beshears, J, Choi, JJ, Laibson, D, Madrian, BC. Using implementation intentions prompts to enhance influenza vaccination rates. Proc Natl Acad Sci U S A 2011; 108: 1041510420. DOI: 10.1073/pnas.1103170108.10.1073/pnas.1103170108CrossRefGoogle ScholarPubMed
Maltz, A, Sarid, A. Attractive flu shot: a behavioral approach to increasing influenza vaccination uptake rates. Med Decis Making 2020; 40: 774784. DOI: 10.1177/0272989X20944190.CrossRefGoogle ScholarPubMed
Johnson, EJ, Medicine, GD. Do defaults save lives? Science 2003; 302: 13381339. DOI: 10.1126/science.1091721.CrossRefGoogle ScholarPubMed
Davidai, S, Gilovich, T, Ross, LD. The meaning of default options for potential organ donors. Proc Natl Acad Sci U S A 2012; 109: 1520115205. DOI: 10.1073/pnas.1211695109.CrossRefGoogle ScholarPubMed
Harrison, JD, Patel, MS. Designing nudges for success in health care. AMA J Ethics 2020; 22: E796801. DOI: 10.1001/amajethics.2020.796.Google ScholarPubMed
Patel, MS, Day, S, Small, DS, et al. Using default options within the electronic health record to increase the prescribing of generic-equivalent medications: a quasi-experimental study. Ann Intern Med 2014; 161: S44S52.CrossRefGoogle ScholarPubMed
Patel, MS, Day, SC, Halpern, SD, et al. Generic medication prescription rates after health system-wide redesign of default options within the electronic health record. JAMA Intern Med 2016; 176: 847848. DOI: 10.1001/jamainternmed.2016.1691.CrossRefGoogle ScholarPubMed
Tversky, A, Kahneman, D. Availability: a heuristic for judging frequency and probability. Cognitive Psychol 1973; 5: 207232.CrossRefGoogle Scholar
Mamede, S, van Gog, T, van den Berge, K, et al. Effect of availability bias and reflective reasoning on diagnostic accuracy among internal medicine residents. JAMA 2010; 304: 11981203. DOI: 10.1001/jama.2010.1276.CrossRefGoogle ScholarPubMed
Poses, RM, Anthony, M. Availability, wishful thinking, and physicians’ diagnostic judgments for patients with suspected bacteremia. Med Decis Making 1991; 11: 159168.10.1177/0272989X9101100303CrossRefGoogle ScholarPubMed
Strahilevitz, J, Zellermayer, O, Vangel, MG, Yonath, H, Feinberg, MS, Rubinstein, E. Case clustering in infective endocarditis: the role of availability bias. Clin Microbiol Infect 2005; 11: 955957. DOI: 10.1111/j.1469-0691.2005.01255.x.CrossRefGoogle ScholarPubMed
Linkenbach, J, Perkins, H. Most of us wear seatbelts: The process and outcomes of a 3-year statewide adult seatbelt campaign in Montana. In: Conference presentation: The national conference on the social norms model, Boston, MA, 2003 Google Scholar
Brady, MT, Byington, CL, Davies, HD, Committee On Infectious Diseases and Bronchiolitis Guidelines Committee, et al. Updated guidance for Palivizumab prophylaxis among infants and young children at increased risk of hospitalization for respiratory syncytial virus infection. Pediatrics 2014; 134: 415420. DOI: 10.1542/peds.2014-1665.Google Scholar
Golombek, SG, Berning, F, Lagamma, EF. Compliance with prophylaxis for respiratory syncytial virus infection in a home setting. Pediatr Infect Dis J 2004; 23: 318322. DOI: 10.1097/00006454-200404000-00008.CrossRefGoogle Scholar
Diehl, JL, Daw, JR, Coley, KC, Rayburg, R. Medical utilization associated with Palivizumab compliance in a commercial and managed medicaid health plan. J Manag Care Pharm 2010; 16: 2331. DOI: 10.18553/jmcp.2010.16.1.23.Google Scholar
Langkamp, DL, Hlavin, SM. Factors predicting compliance with Palivizumab in high-risk infants. Am J Perinatol 2001; 18: 345352. DOI: 10.1055/s-2001-17860.CrossRefGoogle ScholarPubMed
Robbins, JM, Tilford, JM, Gillaspy, SR, et al. Parental emotional and time costs predict compliance with respiratory syncytial virus prophylaxis. Ambul Pediatr 2002; 2: 444448. DOI: 10.1367/1539-4409(2002)002.10.1367/1539-4409(2002)002<0444:PEATCP>2.0.CO;22.0.CO;2>CrossRefGoogle ScholarPubMed
Pignotti, MS, Indolfi, G, Donzelli, G. Factors impacting compliance with Palivizumab prophylaxis. Pediatr Infect Dis J 2004; 23: 186187. DOI: 10.1097/01.inf.0000110271.48794.a7.CrossRefGoogle ScholarPubMed
Sel, K, Aypar, E, Dönmez, YN, et al. Palivizumab compliance in congenital heart disease patients: factors related to compliance and altered lower respiratory tract infection viruses after Palivizumab prophylaxis. Cardiol Young 2020; 30: 818821. DOI: 10.1017/S1047951120001092.10.1017/S1047951120001092CrossRefGoogle ScholarPubMed
Frogel, MP, Stewart, DL, Hoopes, M, Fernandes, AW, Mahadevia, PJ. A systematic review of compliance with Palivizumab administration for RSV immunoprophylaxis. J Manag Care Pharm 2010; 16: 4658. DOI: 10.18553/jmcp.2010.16.1.46.Google ScholarPubMed
Wong, SK, Li, A, Lanctôt, KL, Paes, B. Adherence and outcomes: a systematic review of Palivizumab utilization. Expert Rev Respir Med 2018; 12: 2742. DOI: 10.1080/17476348.2018.1401926.CrossRefGoogle ScholarPubMed
Bernard, L, Lecomte, B, Pereira, B, Proux, A, Boyer, A, Sautou, V. Optimisation de la prévention de la bronchiolite à VRS chez les nouveaux-nés à risque et les prématurés: mesure de l’impact d’une intervention éducative ciblée [Impact of a targeted educational intervention on respiratory syncytial virus bronchiolitis prevention in full-term and preterm infants]. Arch Pediatr 2015; 22: 146153. DOI: 10.1016/j.arcped.2014.11.015.CrossRefGoogle Scholar
Giardino, AP, Tran, XG, Whitmire, DA. Respiratory syncytial virus prevention outreach project. Tex Med 2009; 105: e1.Google ScholarPubMed
Oakes, AH, Patel, MS. A nudge towards increased experimentation to more rapidly improve healthcare. BMJ Qual Saf 2020; 29: 179181. DOI: 10.1136/bmjqs-2019-009948.10.1136/bmjqs-2019-009948CrossRefGoogle ScholarPubMed
Tversky, A, Kahneman, D. Judgement under uncertainty: heuristics and biases. Science 1974; 185: 11241131.CrossRefGoogle ScholarPubMed
Borecka, R, Lauterbach, R, Helwich, E. Factors related to compliance with Palivizumab prophylaxis for respiratory syncytial virus (RSV) infection - data from Poland. Dev Period Med 2016; 20: 181190.Google ScholarPubMed
Anderson, KS, Mullally, VM, Fredrick, LM, Campbell, AL. Compliance with RSV prophylaxis: global physicians’ perspectives. Patient Prefer Adherence 2009; 3: 195203. DOI: 10.2147/ppa.s5696.CrossRefGoogle ScholarPubMed
Tunalı, İnsan, Kırdar, MG, Dayıoğlu, M. Down and up the “U” – A synthetic cohort (panel) analysis of female labor force participation in Turkey, 1988–2013. World Dev 2021; 146: 105609. DOI: 10.1016/j.worlddev.2021.105609.CrossRefGoogle Scholar
Supplementary material: File

Erolu et al. supplementary material

Erolu et al. supplementary material
Download Erolu et al. supplementary material(File)
File 201.2 KB