Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-19T15:19:22.527Z Has data issue: false hasContentIssue false

Neurodevelopment outcomes in the first 5 years of the life of children with transposition of the great arteries surgically corrected in the neonatal period: systematic review and meta-analysis

Published online by Cambridge University Press:  15 November 2023

Catarina Soares*
Affiliation:
Faculty of Medicine of Porto University, Porto, Portugal
Rafael José Vieira
Affiliation:
Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine of Porto University, Porto, Portugal Centre for Health Technology and Services Research, Health Research Network (CINTESIS@RISE), Faculty of Medicine of Porto University, Porto, Portugal
Sandra Costa
Affiliation:
Faculty of Medicine of Porto University, Porto, Portugal Neonatology Department, Centro Hospitalar Universitário São João, Porto, Portugal
Rita Moita
Affiliation:
Neonatology Department, Centro Hospitalar Universitário São João, Porto, Portugal
Mariana Andrade
Affiliation:
Pediatrics Department, Centro Hospitalar Universitário São João, Porto, Portugal
Hercília Guimarães
Affiliation:
Faculty of Medicine of Porto University, Porto, Portugal
*
Corresponding author: Catarina Soares; Email: catarinasoares7a@gmail.com

Abstract

Congenital Heart Defects are the most common abnormalities at birth, resulting in many short- and long-term consequences.

Objectives:

In patients with transposition of the great arteries, surgical correction may achieve definitive treatment, so a thorough knowledge of the long-term outcomes, particularly neurodevelopment outcomes, is essential. Therefore, we conducted a systematic review and meta-analysis to study the neurodevelopment outcomes in the first 5 years of the life of children submitted to corrective surgery for transposition of the great arteries in the neonatal period.

Methods:

A total of 17 studies from 18 reports were included, assessing 809 individuals with surgically corrected transposition of the great arteries. The neurodevelopmental outcomes were assessed with the Bayley Scales of Infant and Toddler Development (BSID) and the Wechsler Intelligence Scale for Children (WISC).

Results:

Mean Mental Development Index (MDI) and Psychomotor Development Index (PDI) were within the average values from 1 to 3 years of age, although the proportion of children scoring more than 1 standard deviation below the mean in PDI, MDI, motor, and language composite scores was significantly higher than in the general population. From 4 to 5 years, mean full-scale global intelligence quotient (IQ), verbal IQ, and performance IQ scores did not differ significantly from the general population.

Conclusion:

This study revealed neurodevelopment scores within the normal range at 5 years of age in children submitted to corrective surgery for transposition of the great arteries in the neonatal period. However, these early outcomes may not adequately predict long-term outcomes. Further studies are needed to identify specific risk factors and early markers of later impairment to guide the establishment of early interventions.

Type
Review
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sadowski, SL. Congenital cardiac disease in the newborn infant: past, present, and future. Crit Care Nurs Clin North Am 2009; 21: 3748. DOI: 10.1016/j.ccell.2008.10.001.CrossRefGoogle ScholarPubMed
Knowles, R, Griebsch, I, Dezateux, C, Brown, J, Bull, C, Wren, C. Newborn screening for congenital heart defects: a systematic review and cost-effectiveness analysis. Health Technol Assess 2005; 9: 1152. DOI: 10.3310/hta9440..CrossRefGoogle ScholarPubMed
Samánek, M. Congenital heart malformations: prevalence, severity, survival, and quality of life. Cardiol Young 2000; 10: 179185. DOI: 10.1017/s1047951100009082.CrossRefGoogle ScholarPubMed
Gutgesell, HP, Garson, A, McNamara, DG. Prognosis for the newborn with transposition of the great arteries. Am J Cardiol 1979; 44: 96100. DOI: 10.1016/0002-9149(79)90256-x.CrossRefGoogle ScholarPubMed
Mbuagbaw, L, Forlemu-Kamwa, D, Chu, A, Thabane, L, Dillenberg, R. Outcomes after corrective surgery for congenital dextro-transposition of the great arteries using the arterial switch technique: a protocol for a scoping systematic review. BMJ Open 2014; 4: e005123e005123. DOI: 10.1136/bmjopen-2014-005123.CrossRefGoogle ScholarPubMed
Jatene, AD, Fontes, VF, Paulista, PP, et al. Successful anatomic correction of transposition of the great vessels. A preliminary report. Arq Bras Cardiol 1975; 28: 461464.Google ScholarPubMed
Kiener, A, Kelleman, M, McCracken, C, Kochilas, L, St Louis, JD, Oster, ME. Long-term survival after arterial versus atrial switch in d-Transposition of the Great Arteries. Ann Thorac Surg 2018; 106: 18271833. DOI: 10.1016/j.athoracsur.2018.06.084.CrossRefGoogle ScholarPubMed
Lim, JM, Porayette, P, Marini, D, et al. Associations between age at arterial switch operation, brain growth, and development in infants with Transposition of the Great Arteries. Circulation 2019; 139: 27282738. DOI: 10.1161/CIRCULATIONAHA.118.037495.CrossRefGoogle ScholarPubMed
Rudra, HS, Mavroudis, C, Backer, CL, et al. The arterial switch operation: 25-year experience with 258 patients. Ann Thorac Surg 2011; 92: 17421746. DOI: 10.1016/j.athoracsur.2011.04.101.CrossRefGoogle ScholarPubMed
Hirsch, JC, Gurney, JG, Donohue, JE, Gebremariam, A, Bove, EL, Ohye, RG. Hospital mortality for Norwood and arterial switch operations as a function of institutional volume. Pediatr Cardiol 2008; 29: 713717. DOI: 10.1007/s00246-007-9171-2.CrossRefGoogle ScholarPubMed
Lalezari, S, Bruggemans, EF, Blom, NA, Hazekamp, MG. Thirty-year experience with the arterial switch operation. Ann Thorac Surg 2011; 92: 973979. DOI: 10.1016/j.athoracsur.2011.04.086.CrossRefGoogle ScholarPubMed
Marino, BS, Lipkin, PH, Newburger, JW, et al. Neurodevelopmental outcomes in children with congenital heart disease: evaluation and management: a scientific statement from the American Heart Association. Circulation 2012; 126: 11431172. DOI: 10.1161/CIR.0b013e318265ee8a.CrossRefGoogle ScholarPubMed
Wernovsky, G. Current insights regarding neurological and developmental abnormalities in children and young adults with complex congenital cardiac disease. Cardiol Young 2006; 16: 92104. DOI: 10.1017/S1047951105002398.CrossRefGoogle Scholar
Ibuki, K, Watanabe, K, Yoshimura, N, et al. The improvement of hypoxia correlates with neuroanatomic and developmental outcomes: comparison of midterm outcomes in infants with transposition of the great arteries or single-ventricle physiology. J Thorac Cardiovasc Surg 2012; 143: 10771085. DOI: 10.1016/j.jtcvs.2011.08.042.CrossRefGoogle ScholarPubMed
Neufeld, RE, Clark, BG, Robertson, CMT, et al. Five-year neurocognitive and health outcomes after the neonatal arterial switch operation. J Thorac Cardiovasc Surg 2008; 136: 1413U4. DOI: 10.1016/j.jtcvs.2008.05.011.CrossRefGoogle ScholarPubMed
Mendoza, JC, Wilkerson, SA, Reese, AH. Follow-up of patients who underwent arterial switch repair for Transposition of the Great-Arteries, Am J Dis Children 1991; 145: 4043. DOI: 10.1001/archpedi.1991.02160010042013.Google ScholarPubMed
Park, IS, Yoon, SY, Min, JY, et al. Metabolic alterations and neurodevelopmental outcome of infants with transposition of the great arteries. Pediatr Cardiol 2006; 27: 569576.CrossRefGoogle ScholarPubMed
Peyvandi, S, Chau, V, Guo, T, et al. Neonatal brain injury and timing of neurodevelopmental assessment in patients with congenital heart disease. J Am Coll Cardiol 2018; 71: 19861996. DOI: 10.1016/j.jacc.2018.02.068.CrossRefGoogle ScholarPubMed
Wypij, D, Newburger, JW, Rappaport, LA, et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial. J Thorac Cardiovasc Surg 2003; 126: 13971403. Comment in: J Thorac Cardiovasc Surg. 2004 May;127(5):1256-61 PMID: 15115980 [https://www.ncbi.nlm.nih.gov/pubmed/15115980] Comment in: J Thorac Cardiovasc Surg. 2005 Nov;130(5):1236 PMID: 16256773 [https://www.ncbi.nlm.nih.gov/pubmed/16256773].CrossRefGoogle ScholarPubMed
Hovels-Gurich, HH, Seghaye, MC, Dabritz, S, Messmer, BJ, von Bernuth, G. Cognitive and motor development in preschool and school-aged children after neonatal arterial switch operation. J Thorac Cardiovasc Surg 1997; 114: 578585.CrossRefGoogle ScholarPubMed
Bertholdt, S, Latal, B, Liamlahi, R, et al. Cerebral lesions on magnetic resonance imaging correlate with preoperative neurological status in neonates undergoing cardiopulmonary bypass surgery. Eur J Cardio-Thorac Surg 2014; 45: 625632. DOI: 10.1093/ejcts/ezt422.CrossRefGoogle ScholarPubMed
De Ferranti, S, Gauvreau, K, Hickey, PR, et al. Intraoperative hyperglycemia during infant cardiac surgery is not associated with adverse neurodevelopmental outcomes at 1, 4 and 8 years. Anesthesiology. 2004; 100: 13451352. DOI: 10.1097/00000542-200406000-00005.CrossRefGoogle Scholar
Bellinger, DC, Rappaport, LA, Wypij, D, Wernovsky, G, Newburger, JW. Patterns of developmental dysfunction after surgery during infancy to correct transposition of the great arteries. J Dev Behav Pediatr 1997; 18: 7583.CrossRefGoogle ScholarPubMed
Bellinger, DC, Jonas, RA, Rappaport, LA, et al., Med, Engl J. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med 1995; 332: 549555. Comment in: N Engl J Med. 1995 Aug 10;333(6):391; author reply 391-2 PMID: 7609768 [https://www.ncbi.nlm.nih.gov/pubmed/7609768] Comment in: N Engl J Med. 1995 Aug 10;333(6):391; author reply 391-2 PMID: 7609769 [https://www.ncbi.nlm.nih.gov/pubmed/7609769].CrossRefGoogle ScholarPubMed
Andropoulos, DB, Easley, RB, Brady, K, et al. Changing expectations for neurological outcomes after the neonatal arterial switch operation. Ann Thorac Surg 2012; 94: 12501256. DOI: 10.1016/j.athoracsur.2012.04.050.CrossRefGoogle ScholarPubMed
Toet, MC, Flinterman, A, Laar, I. Cerebral oxygen saturation and electrical brain activity before, during, and up to 36 hours after arterial switch procedure in neonates without pre-existing brain damage: its relationship to neurodevelopmental outcome. Exp Brain Res 2005; 165: 343350.CrossRefGoogle ScholarPubMed
Brosig, CL, Mussatto, KA, Kuhn, EM, Tweddell, JS. Neurodevelopmental outcome in preschool survivors of complex congenital heart disease: implications for clinical practice. J Pediatr Health Care Off Publ Natl Assoc Pediatr Nurse Assoc Pract 2007; 21: 312.Google ScholarPubMed
Kordopati-Zilou, K, Sergentanis, T, Pervanidou, P, et al. Dextro-Transposition of Great Arteries and neurodevelopmental outcomes: a review of the literature. Children (Basel) 2022; 9: 502. DOI: 10.3390/children9040502.Google ScholarPubMed
Liberati, A, Altman, DG, Tetzlaff, J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009; 339: b2700b2700. DOI: 10.1136/bmj.b2700.CrossRefGoogle ScholarPubMed
Higgins, JPT, Thomas, J, Chandler, J, et al. Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions.. Cochrane Handb Syst Rev Interv 2019; 10: ED000142.Google Scholar
Koh, WM, Bogich, T, Siegel, K, et al. The epidemiology of hand, foot and mouth disease in Asia: a systematic review and analysis. Pediatr Infect Dis J 2016; 35: e285300. DOI: 10.1097/inf.0000000000001242.CrossRefGoogle Scholar
Clivio, S, Putzu, A, Tramèr, MR. Intravenous lidocaine for the prevention of cough: systematic review and meta-analysis of randomized controlled trials. Anesth Analg 2019; 129: 12491255. DOI: 10.1213/ane.0000000000003699.CrossRefGoogle ScholarPubMed
José-Vieira, R, Ferreira, A, Menéres, P, Sousa-Pinto, B, Figueira, L. Efficacy and safety of intravitreal and periocular injection of corticosteroids in noninfectious uveitis: a systematic review. Surv Ophthalmol 2022; 67: 9911013. DOI: 10.1016/j.survophthal.2021.12.002.CrossRefGoogle ScholarPubMed
Sterne, JAC, Savović, J, Page, MJ, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019; 366: l4898. DOI: 10.1136/bmj.l4898.CrossRefGoogle ScholarPubMed
Sterne, JA, Hernán, MA, Reeves, BC, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016; 355: i4919. DOI: 10.1136/bmj.i4919.CrossRefGoogle ScholarPubMed
DerSimonian, R, Laird, N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177188. DOI: 10.1016/0197-2456(86)90046-2.CrossRefGoogle ScholarPubMed
Balduzzi, S, Rücker, G, Schwarzer, G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health 2019; 22: 153160. DOI: 10.1136/ebmental-2019-300117.CrossRefGoogle Scholar
Cheng, HH, Wypij, D, Laussen, PC, et al. Cerebral blood flow velocity and neurodevelopmental outcome in infants undergoing surgery for congenital heart disease. Ann Thorac Surg 2014; 98: 125132. DOI: 10.1016/j.athoracsur.2014.03.035.CrossRefGoogle ScholarPubMed
Andropoulos, DB, Brady, K, Easley, RB, et al. Erythropoietin neuroprotection in neonatal cardiac surgery: a phase I/II safety and efficacy trial. J Thorac Cardiovasc Surg 2013; 146: 124131. DOI: 10.1016/j.jtcvs.2012.09.046.CrossRefGoogle ScholarPubMed
De Silvestro, AA, Kruger, B, Steger, C, et al. Cerebral desaturation during neonatal congenital heart surgery is associated with perioperative brain structure alterations but not with neurodevelopmental outcome at 1 year. Eur J Cardio-Thorac Surg 2022; 62: ezac138. DOI: 10.1093/ejcts/ezac138.CrossRefGoogle Scholar
Hicks, MS, Sauve, RS, Robertson, CMT, et al. Early childhood language outcomes after arterial switch operation: a prospective cohort study. SpringerPlus 2016; 5: 1681. DOI: 10.1186/s40064.CrossRefGoogle ScholarPubMed
Gaynor, JW, Gerdes, M, Nord, AS, et al. Is cardiac diagnosis a predictor of neurodevelopmental outcome after cardiac surgery in infancy? J Thorac Cardiovasc Surg 2010; 140: 12301237. DOI: 10.1016/j.jtcvs.2010.07.069.CrossRefGoogle ScholarPubMed
Freed, DH, Robertson, CMT, Sauve, RS, et al. Intermediate-term outcomes of the arterial switch operation for transposition of great arteries in neonates: alive but well? J Thorac Cardiovasc Surg 2006; 132: 845852.CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, du Plessis, AJ, et al. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg 2001; 121: 374383. Erratum in: J Thorac Cardiovasc Surg 2001;121(5):893. Comment in: J Thorac Cardiovasc Surg. 2002;123(1):194. PMID: 11782779 [https://www.ncbi.nlm.nih.gov/pubmed/11782779].CrossRefGoogle ScholarPubMed
Bellinger, DC, Wypij, D, Kuban, KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation 1999; 100: 526532.CrossRefGoogle ScholarPubMed
Mackie, AS, Alton, GY, Dinu, IA, et al. Clinical outcome score predicts the need for neurodevelopmental intervention after infant heart surgery. J Thorac Cardiovasc Surg 2013; 145: 12481254.e2. DOI: 10.1016/j.jtcvs.2012.04.029.CrossRefGoogle ScholarPubMed
Del Rosario, C, Slevin, M, Molloy, EJ, Quigley, J, Nixon, E. How to use the Bayley scales of infant and toddler development. Arch Dis Child Educ Pract Ed 2021; 106: 108112. DOI: 10.1136/archdischild-2020-319063.CrossRefGoogle ScholarPubMed
Kasmi, L, Bonnet, D, Montreuil, M, et al. Neuropsychological and psychiatric outcomes in dextro-transposition of the great arteries across the lifespan: a state-of-the-art review. Front Pediatr 2017; 5: 59. DOI: 10.3389/fped.2017.00059.CrossRefGoogle ScholarPubMed
Calderon, J, Angeard, N, Moutier, S, Plumet, MH, Jambaqué, I, Bonnet, D. Impact of prenatal diagnosis on neurocognitive outcomes in children with transposition of the great arteries. J Pediatr 2012; 161: 9498.e1. DOI: 10.1016/j.jpeds.2011.12.036.CrossRefGoogle ScholarPubMed
Bartlett, JM, Wypij, D, Bellinger, DC, et al. Effect of prenatal diagnosis on outcomes in D-transposition of the great arteries. Pediatrics 2004; 113: e335e340.CrossRefGoogle ScholarPubMed
Supplementary material: File

Soares et al. supplementary material
Download undefined(File)
File 838.2 KB