Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-18T08:16:22.664Z Has data issue: false hasContentIssue false

Pulmonary reperfusion injury in post-palliative intervention of oligaemic cyanotic CHD: a new catastrophic consequence or just revisiting the same old story?

Published online by Cambridge University Press:  18 October 2023

Sisca Natalia Siagian
Affiliation:
Division of Pediatric Cardiology and Congenital Heart Disease, Department of Cardiology and Vascular Medicine, National Cardiovascular Centre Harapan Kita, Universitas Indonesia, Jakarta, Indonesia
Made Satria Yudha Dewangga
Affiliation:
Department of Cardiology and Vascular Medicine, Sanglah General Hospital, Denpasar, Indonesia
Bayushi Eka Putra
Affiliation:
Division of Pediatric Cardiology and Congenital Heart Disease, Department of Cardiology and Vascular Medicine, National Cardiovascular Centre Harapan Kita, Universitas Indonesia, Jakarta, Indonesia
Christianto Christianto*
Affiliation:
Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
*
Corresponding author: C. Christianto; Email: chriz88to@gmail.com

Abstract

Pulmonary reperfusion injury is a well-recognised clinical entity in the setting pulmonary artery angioplasty for pulmonary artery stenosis or chronic thromboembolic disease, but not much is known about this complication in post-palliative intervention of oligaemic cyanotic CHD. The pathophysiology of pulmonary reperfusion injury in this population consists of both ischaemic and reperfusion injury, mainly resulting in oxidative stress from reactive oxygen species generation, followed by endothelial dysfunction, and cytokine storm that may induce multiple organ dysfunction. Other mechanisms of pulmonary reperfusion injury are “no-reflow” phenomenon, overcirculation from high pressure in pulmonary artery, and increased left ventricular end-diastolic pressure. Chronic hypoxia in cyanotic CHD eventually depletes endogenous antioxidant and increased the risk of pulmonary reperfusion injury, thus becoming a concern for palliative interventions in the oligaemic subgroup. The incidence of pulmonary reperfusion injury varies depending on multifactors. Despite its inconsistence occurrence, pulmonary reperfusion injury does occur and may lead to morbidity and mortality in this population. The current management of pulmonary reperfusion injury is supportive therapy to prevent deterioration of lung injury. Therefore, a general consensus on pulmonary reperfusion injury is necessary for the diagnosis and management of this complication as well as further studies to establish the use of novel and potential therapies for pulmonary reperfusion injury.

Type
Review
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Quandt, D, Ramchandani, B, Stickley, J, et al. Stenting of the right ventricular outflow tract promotes better pulmonary arterial growth compared with modified blalock-taussig shunt palliation in tetralogy of Fallot-type lesions. JACC Cardiovasc Interv 2017; 10: 17741784.10.1016/j.jcin.2017.06.023CrossRefGoogle ScholarPubMed
Sandoval, JP, Chaturvedi, RR, Benson, L, et al. Right ventricular outflow tract stenting in tetralogy of Fallot infants with risk factors for early primary repair. Circ Cardiovasc Interv 2016; 9: e003979.10.1161/CIRCINTERVENTIONS.116.003979CrossRefGoogle ScholarPubMed
Li, D, Zhou, X, Li, M. Arterial duct stent versus surgical shunt for patients with duct-dependent pulmonary circulation: a meta-analysis. BMC Cardiovasc Disord 2021; 21: 9.10.1186/s12872-020-01817-2CrossRefGoogle ScholarPubMed
Asija, R, Roth, SJ, Hanley, FL, et al. Reperfusion pulmonary edema in children with tetralogy of Fallot, pulmonary atresia, and major aortopulmonary collateral arteries undergoing unifocalization procedures: a pilot study examining potential pathophysiologic mechanisms and clinical significance. J Thorac Cardiovasc Surg 2014; 148: 15601565.10.1016/j.jtcvs.2014.01.017CrossRefGoogle ScholarPubMed
Yacouby, S, Meador, M, Mossad, E. Lung reperfusion injury in patients after balloon angioplasty for pulmonary artery stenosis. J Cardiothorac Vasc Anesth 2014; 28: 502505.10.1053/j.jvca.2013.10.024CrossRefGoogle ScholarPubMed
Ejiri, K, Ogawa, A, Fujii, S, Ito, H, Matsubara, H. Vascular injury is a major cause of lung injury after balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Circ Cardiovasc Interv 2018; 11: e005884.10.1161/CIRCINTERVENTIONS.117.005884CrossRefGoogle Scholar
Maskatia, SA, Feinstein, JA, Newman, B, Hanley, FL, Roth, SJ. Pulmonary reperfusion injury after the unifocalization procedure for tetralogy of Fallot, pulmonary atresia, and major aortopulmonary collateral arteries. J Thorac Cardiovasc Surg 2012; 144: 184189.10.1016/j.jtcvs.2011.12.030CrossRefGoogle ScholarPubMed
Cowled, P, Fitridge, R. Pathophysiology of Reperfusion Injury. In: Fitridge, R, Thompson, M (eds). Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists, University of Adelaide Press, Adelaide (AU), 2011.Google Scholar
Zarbock, A, Eroglu, A, Erturk, E, Ince, C, Westphal, M. Ischemia-reperfusion injury and anesthesia. Biomed Res Int 2014; 2014: 980318.10.1155/2014/980318CrossRefGoogle ScholarPubMed
den Hengst, WA, Gielis, JF, Lin, JY, Van Schil, PE, De Windt, LJ, Moens, AL. Lung ischemia-reperfusion injury: a molecular and clinical view on a complex pathophysiological process. Am J Physiol Heart Circ Physiol 2010; 299: H128399.10.1152/ajpheart.00251.2010CrossRefGoogle ScholarPubMed
Weyker, PD, Webb, CA, Kiamanesh, D, Flynn, BC. Lung ischemia reperfusion injury: a bench-to-bedside review. Semin Cardiothorac Vasc Anesth 2013; 17: 2843.10.1177/1089253212458329CrossRefGoogle ScholarPubMed
Khemani, RG, Patel, NR, Bart, RD 3rd, Newth, CJL. Comparison of the pulse oximetric saturation/fraction of inspired oxygen ratio and the PaO2/fraction of inspired oxygen ratio in children. Chest 2009; 135: 662668.10.1378/chest.08-2239CrossRefGoogle ScholarPubMed
El-Khatib, MF, Jamaleddine, GW. A new oxygenation index for reflecting intrapulmonary shunting in patients undergoing open-heart surgery. Chest 2004; 125: 592596.10.1378/chest.125.2.592CrossRefGoogle ScholarPubMed
Christie, JD, Carby, M, Bag, R, Corris, P, Hertz, M, Weill, D. Report of the ISHLT working group on primary lung graft dysfunction part II: definition. A consensus statement of the international society for heart and lung transplantation. J Heart Lung Transplant 2005; 24: 14541459.10.1016/j.healun.2004.11.049CrossRefGoogle Scholar
Eltzschig, HK, Carmeliet, P. Hypoxia and inflammation. N Engl J Med 2011; 364: 656665.10.1056/NEJMra0910283CrossRefGoogle ScholarPubMed
Yellon, DM, Hausenloy, DJ. Myocardial reperfusion injury. N Engl J Med 2007; 357: 11211135.10.1056/NEJMra071667CrossRefGoogle ScholarPubMed
Yemisci, M, Gursoy-Ozdemir, Y, Vural, A, Can, A, Topalkara, K, Dalkara, T. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat Med 2009; 15: 10311037.10.1038/nm.2022CrossRefGoogle ScholarPubMed
Wu, MY, Yiang, GT, Liao, WT, et al. Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 2018; 46: 16501667.10.1159/000489241CrossRefGoogle ScholarPubMed
Mura, M, Andrade, CF, Han, B, et al. Intestinal ischemia-reperfusion-induced acute lung injury and oncotic cell death in multiple organs. Shock 2007; 28: 227238.10.1097/01.shk.0000278497.47041.e3CrossRefGoogle ScholarPubMed
Deffebach, ME, Charan, NB, Lakshminarayan, S, Butler, J. The bronchial circulation. Small, but a vital attribute of the lung. Am Rev Respir Dis 1987; 135: 463481.Google ScholarPubMed
Esme, H, Fidan, H, Koken, T, Solak, O. Effect of lung ischemia--reperfusion on oxidative stress parameters of remote tissues. Eur J Cardiothorac Surg 2006; 29: 294298.10.1016/j.ejcts.2005.12.008CrossRefGoogle ScholarPubMed
Adkins, WK, Taylor, AE. Role of xanthine oxidase and neutrophils in ischemia-reperfusion injury in rabbit lung. J Appl Physiol 1990; 69: 20122018.10.1152/jappl.1990.69.6.2012CrossRefGoogle ScholarPubMed
Eckenhoff, RG, Dodia, C, Tan, Z, Fisher, AB. Oxygen-dependent reperfusion injury in the isolated rat lung. J Appl Physiol 1992; 72: 14541460.10.1152/jappl.1992.72.4.1454CrossRefGoogle ScholarPubMed
Fisher, AB, Dodia, C, Tan, ZT, Ayene, I, Eckenhoff, RG. Oxygen-dependent lipid peroxidation during lung ischemia. J Clin Invest 1991; 88: 674679.10.1172/JCI115352CrossRefGoogle ScholarPubMed
Verma, S, Fedak, PW, Weisel, RD, et al. Fundamentals of reperfusion injury for the clinical cardiologist. Circulation 2002; 105: 23322336.10.1161/01.CIR.0000016602.96363.36CrossRefGoogle ScholarPubMed
Bergersen, L, Lock, JE. What is the current option of first choice for treatment of pulmonary arterial stenosis? Cardiol Young 2006; 16: 329338.10.1017/S1047951106000679CrossRefGoogle ScholarPubMed
Ho, AB, Salmon, TP, Hribernik, I, Hayes, N, Thomson, JD, Bentham, JR. A case series of three patients with unilateral disconnected pulmonary artery supplied by an ipsilateral patent ductus arteriosus: neonatal ductal stenting as palliation to preserve pulmonary arterial patency. Eur Heart J Case Rep 2020; 4: 17.10.1093/ehjcr/ytaa422CrossRefGoogle ScholarPubMed
Silverman, NA, Kohler, J, Levitsky, S, Pavel, DG, Fang, RB, Feinberg, H. Chronic hypoxemia depresses global ventricular function and predisposes to the depletion of high-energy phosphates during cardioplegic arrest: implications for surgical repair of cyanotic congenital heart defects. Ann Thorac Surg 1984; 37: 304308.10.1016/S0003-4975(10)60735-7CrossRefGoogle Scholar
Laubach, VE, Sharma, AK. Mechanisms of lung ischemia-reperfusion injury. Curr Opin Organ Transplant 2016; 21: 246252.10.1097/MOT.0000000000000304CrossRefGoogle ScholarPubMed
Ossa Galvis, MM, Bhakta, RT, Tarmahomed, A, Mendez, MD. Cyanotic Heart Disease. StatPearls. StatPearls Publishing, Treasure Island (FL), 2022.Google Scholar
Teoh, KH, Mickle, DA, Weisel, RD, et al. Effect of oxygen tension and cardiovascular operations on the myocardial antioxidant enzyme activities in patients with tetralogy of Fallot and aorta-coronary bypass. J Thorac Cardiovasc Surg 1992; 104: 159164.10.1016/S0022-5223(19)34848-2CrossRefGoogle ScholarPubMed
Hammon, JW Jr. Myocardial protection in the immature heart. Ann Thorac Surg 1995; 60: 839842.10.1016/0003-4975(95)00573-4CrossRefGoogle ScholarPubMed
Asada, D, Itoi, T, Nakamura, A, Hamaoka, K. Tolerance to ischemia reperfusion injury in a congenital heart disease model. Pediatr Int 2016; 58: 12661273.10.1111/ped.13022CrossRefGoogle Scholar
Allen, BS, Ilbawi, MN. Hypoxia, reoxygenation and the role of systemic leukodepletion in pediatric heart surgery. Perfusion 2001; 16: 1929.10.1177/026765910101600i104CrossRefGoogle ScholarPubMed
Walker, CP, Bateman, CJ, Rigby, ML, Brookes, CI. Acute pulmonary edema after percutaneous balloon valvuloplasty for pulmonary valve stenosis. J Cardiothorac Vasc Anesth 2001; 15: 480482.10.1053/jcan.2001.24998CrossRefGoogle ScholarPubMed
Mohanty, S, Pandit, BN, Tyagi, S. Balloon pulmonary valvotomy--not just a simple balloon dilatation. Indian Heart J 2014; 66: 462465.10.1016/j.ihj.2014.05.007CrossRefGoogle ScholarPubMed
Tefera, E, Qureshi, SA, Bermudez-Cañete, R, Rubio, L. Percutaneous balloon dilation of severe pulmonary valve stenosis in patients with cyanosis and congestive heart failure. Catheter Cardiovasc Interv 2014; 84: E715.10.1002/ccd.25324CrossRefGoogle ScholarPubMed
Ostovan, MA, Kamali, M, Zolghadrasli, A. A case of fatal acute lung injury after balloon valvuloplasty of pulmonary stenosis: case report and review of literature. J Cardiovasc Thorac Res 2015; 7: 7880.10.15171/jcvtr.2015.18CrossRefGoogle ScholarPubMed
Blake, K, Yancy, CW. Change the name of the blalock-taussig shunt to blalock-thomas-taussig shunt. JAMA Surg 2022; 157: 287288.10.1001/jamasurg.2021.5611CrossRefGoogle ScholarPubMed
Kaskinen, AK, Keski-Nisula, J, Martelius, L, et al. Lung injury after neonatal congenital cardiac surgery is mild and modifiable by corticosteroids. J Cardiothorac Vasc Anesth 2021; 35: 21002107.10.1053/j.jvca.2021.01.017CrossRefGoogle ScholarPubMed
Caputo, M, Mokhtari, A, Rogers, CA, et al. The effects of normoxic versus hyperoxic cardiopulmonary bypass on oxidative stress and inflammatory response in cyanotic pediatric patients undergoing open cardiac surgery: a randomized controlled trial. J Thorac Cardiovasc Surg 2009; 138: 206214.10.1016/j.jtcvs.2008.12.028CrossRefGoogle ScholarPubMed
Okita, Y, Miki, S, Kusuhara, K, et al. Acute pulmonary edema after blalock-taussig anastomosis. Ann Thorac Surg 1992; 53: 684685.10.1016/0003-4975(92)90334-ZCrossRefGoogle ScholarPubMed
Tassig, HB, Crocetti, A, Eshaghpour, E, et al. Long-time observations on the blalock-taussig operation. 3. Common complications. Johns Hopkins Med J 1971; 129: 274289.Google ScholarPubMed
Hofschire, PJ, Rosenquist, GC, Ruckerman, RN, Moller, JH, Edwards, JE. Pulmonary vascular disease complicating the blalock-taussig anastomosis. Circulation 1977; 56: 124126.10.1161/01.CIR.56.1.124CrossRefGoogle ScholarPubMed
Ismail, SR, Almazmi, MM, Khokhar, R, et al. Effects of protocol-based management on the post-operative outcome after systemic to pulmonary shunt. Egypt Heart J 2018; 70: 271278.10.1016/j.ehj.2018.09.007CrossRefGoogle ScholarPubMed
Dirks, V, Prêtre, R, Knirsch, W, et al. Modified blalock taussig shunt: a not-so-simple palliative procedure. Eur J Cardiothorac Surg 2013; 44: 10961102.10.1093/ejcts/ezt172CrossRefGoogle ScholarPubMed
Wardoyo, S, Makdinata, W, Wijayanto, MA. Perioperative strategy to minimize mortality in neonatal modified blalock-taussig–Thomas shunt: a literature review. Cirugía Cardiovascular 2022; 29: 3135.10.1016/j.circv.2021.04.002CrossRefGoogle Scholar
Qu, X, Li, Q, Wang, X, Yang, X, Wang, D. N-acetylcysteine attenuates cardiopulmonary bypass-induced lung injury in dogs. J Cardiothorac Surg 2013; 8: 107.10.1186/1749-8090-8-107CrossRefGoogle ScholarPubMed
Apostolakis, EE, Koletsis, EN, Baikoussis, NG, Siminelakis, SN, Papadopoulos, GS. Strategies to prevent intraoperative lung injury during cardiopulmonary bypass. J Cardiothorac Surg 2010; 5: 1.10.1186/1749-8090-5-1CrossRefGoogle ScholarPubMed
Luc, JGY, Aboelnazar, NS, Himmat, S, et al. A Leukocyte filter does not provide further benefit during ex vivo lung perfusion. Asaio J 2017; 63: 672678.10.1097/MAT.0000000000000550CrossRefGoogle Scholar
Ziyaeifard, M, Alizadehasl, A, Massoumi, G. Modified ultrafiltration during cardiopulmonary bypass and postoperative course of pediatric cardiac surgery. Res Cardiovasc Med 2014; 3: e17830.Google ScholarPubMed
Slottosch, I, Liakopoulos, O, Kuhn, E, et al. Controlled lung reperfusion to reduce pulmonary ischaemia/reperfusion injury after cardiopulmonary bypass in a porcine model. Interact Cardiovasc Thorac Surg 2014; 19: 962970.10.1093/icvts/ivu270CrossRefGoogle ScholarPubMed
Gauduel, Y, Menasche, P, Duvelleroy, M. Enzyme release and mitochondrial activity in reoxygenated cardiac muscle: relationship with oxygen-induced lipid peroxidation. Gen Physiol Biophys 1989; 8: 327340.Google ScholarPubMed
Joachimsson, PO, Sjöberg, F, Forsman, M, Johansson, M, Ahn, HC, Rutberg, H. Adverse effects of hyperoxemia during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1996; 112: 812819.10.1016/S0022-5223(96)70069-7CrossRefGoogle ScholarPubMed
Sasson, L, Sherman, A, Ezri, T, et al. Mode of ventilation during cardiopulmonary bypass does not affect immediate postbypass oxygenation in pediatric cardiac patients. J Clin Anesth 2007; 19: 429433.10.1016/j.jclinane.2007.03.007CrossRefGoogle Scholar
Arthur E.Baue, ASG, Graeme, LH, Hillel, L, Keith, SN. Glenn’s Thoracic and Cardiovascular Surgery. Appleton & Lange, Minneapolis, 1991.Google Scholar
Qiu, FH, Wada, K, Stahl, GL, Serhan, CN. IMP and AMP deaminase in reperfusion injury down-regulates neutrophil recruitment. Proc Natl Acad Sci U S A 2000; 97: 42674272.10.1073/pnas.97.8.4267CrossRefGoogle ScholarPubMed
Hu, J, Li, P, Chen, X, Yan, J, Zhang, J, Zhang, C. Effects of modified ultrafiltration and conventional ultrafiltration combination on perioperative clinical outcomes in pediatric cardiac surgery: a meta-analysis. Medicine (Baltimore) 2021; 100: e24221.10.1097/MD.0000000000024221CrossRefGoogle ScholarPubMed
Kuratani, N, Bunsangjaroen, P, Srimueang, T, Masaki, E, Suzuki, T, Katogi, T. Modified versus conventional ultrafiltration in pediatric cardiac surgery: a meta-analysis of randomized controlled trials comparing clinical outcome parameters. J Thorac Cardiovasc Surg 2011; 142: 861867.10.1016/j.jtcvs.2011.04.001CrossRefGoogle ScholarPubMed
Whitlock, RP, Devereaux, PJ, Teoh, KH, et al. Methylprednisolone in patients undergoing cardiopulmonary bypass (SIRS): a randomised, double-blind, placebo-controlled trial. Lancet 2015; 386: 12431253.10.1016/S0140-6736(15)00273-1CrossRefGoogle ScholarPubMed
Whitlock, R, Teoh, K, Vincent, J, et al. Rationale and design of the steroids in cardiac surgery trial. Am Heart J 2014; 167: 660665.10.1016/j.ahj.2014.01.018CrossRefGoogle ScholarPubMed
Glumac, S, Kardum, G, Sodic, L, Supe-Domic, D, Karanovic, N. Effects of dexamethasone on early cognitive decline after cardiac surgery: a randomised controlled trial. Eur J Anaesthesiol 2017; 34: 776784.10.1097/EJA.0000000000000647CrossRefGoogle ScholarPubMed
Glumac, S, Kardum, G, Sodic, L, et al. Longitudinal assessment of preoperative dexamethasone administration on cognitive function after cardiac surgery: a 4-year follow-up of a randomized controlled trial. BMC Anesthesiol 2021; 21: 129.10.1186/s12871-021-01348-zCrossRefGoogle ScholarPubMed
Lodge, AJ, Chai, PJ, Daggett, CW, Ungerleider, RM, Jaggers, J. Methylprednisolone reduces the inflammatory response to cardiopulmonary bypass in neonatal piglets: timing of dose is important. J Thorac Cardiovasc Surg 1999; 117: 515522.10.1016/S0022-5223(99)70331-4CrossRefGoogle ScholarPubMed
Chaney, MA, Durazo-Arvizu, RA, Nikolov, MP, Blakeman, BP, Bakhos, M. Methylprednisolone does not benefit patients undergoing coronary artery bypass grafting and early tracheal extubation. J Thorac Cardiovasc Surg 2001; 121: 561569.10.1067/mtc.2001.112343CrossRefGoogle Scholar
Chaney, MA, Nikolov, MP, Blakeman, B, Bakhos, M, Slogoff, S. Pulmonary effects of methylprednisolone in patients undergoing coronary artery bypass grafting and early tracheal extubation. Anesth Analg 1998; 87: 2733.10.1213/00000539-199807000-00007CrossRefGoogle ScholarPubMed
Chai, T, Zhuang, X, Tian, M, et al. Meta-analysis: shouldn’t prophylactic corticosteroids be administered during cardiac surgery with cardiopulmonary bypass? Front Surg 2022; 9: 832205.10.3389/fsurg.2022.832205CrossRefGoogle ScholarPubMed
Perchermeier, S, Tassani-Prell, P. The use of corticosteroids for cardiopulmonary bypass in adults. Curr Anesthesiol Rep 2021; 11: 292297.10.1007/s40140-021-00468-zCrossRefGoogle Scholar
Hall, RI, Smith, MS, Rocker, G. The systemic inflammatory response to cardiopulmonary bypass: pathophysiological, therapeutic, and pharmacological considerations. Anesth Analg 1997; 85: 766782.10.1213/00000539-199710000-00011CrossRefGoogle ScholarPubMed
Richter, JA, Meisner, H, Tassani, P, Barankay, A, Dietrich, W, Braun, SL. Drew-anderson technique attenuates systemic inflammatory response syndrome and improves respiratory function after coronary artery bypass grafting. Ann Thorac Surg 2000; 69: 7783.10.1016/S0003-4975(99)01131-5CrossRefGoogle ScholarPubMed
Tassani, P, Richter, JA, Barankay, A, et al. Does high-dose methylprednisolone in aprotinin-treated patients attenuate the systemic inflammatory response during coronary artery bypass grafting procedures? J Cardiothorac Vasc Anesth 1999; 13: 165172.10.1016/S1053-0770(99)90081-2CrossRefGoogle ScholarPubMed
Fitridge, R. Mechanisms of Vascular Disease: A Textbook for Vascular Specialists. Springer, Adelaide, 2020, 755.10.1007/978-3-030-43683-4CrossRefGoogle Scholar
Glatz, AC, Petit, CJ, Goldstein, BH, et al. Comparison between patent ductus arteriosus stent and modified blalock-taussig shunt as palliation for infants with ductal-dependent pulmonary blood flow: insights from the congenital catheterization research collaborative. Circulation 2018; 137: 589601.10.1161/CIRCULATIONAHA.117.029987CrossRefGoogle ScholarPubMed
Bentham, JR, Zava, NK, Harrison, WJ, et al. Duct stenting versus modified blalock-taussig shunt in neonates with duct-dependent pulmonary blood flow: associations with clinical outcomes in a multicenter national study. Circulation 2018; 137: 581588.10.1161/CIRCULATIONAHA.117.028972CrossRefGoogle Scholar
Nasser, BA, Abdulrahman, M, Qwaee, AAL, Alakfash, A, Mohamad, T, Kabbani, MS. Impact of stent of ductus arteriosus and modified blalock-taussig shunt on pulmonary arteries growth and second-stage surgery in infants with ductus-dependent pulmonary circulation. J Saudi Heart Assoc 2020; 32: 8692.Google ScholarPubMed
Bahaidarah, S, Al-Ata, J, Alkhushi, N, et al. Outcome of ductus arteriosus stenting including vertical tubular and convoluted tortuous ducts with emphasis on technical considerations. Egypt Heart J 2021; 73: 83.10.1186/s43044-021-00210-4CrossRefGoogle ScholarPubMed
Alwi, M. Stenting the ductus arteriosus: case selection, technique and possible complications. Ann Pediatr Cardiol 2008; 1: 3845.10.4103/0974-2069.41054CrossRefGoogle ScholarPubMed
Castleberry, CD, Gudausky, TM, Berger, S, Tweddell, JS, Pelech, AN. Stenting of the right ventricular outflow tract in the high-risk infant with cyanotic teratology of Fallot. Pediatr Cardiol 2014; 35: 423430.10.1007/s00246-013-0796-zCrossRefGoogle ScholarPubMed
Laurentius, A, Wiyono, L, Dominique Subali, A, Natalia Siagian, S. Evaluation of right ventricular outflow tract stenting as palliative treatment in severely cyanotic tetralogy of fallot: a systematic review and meta-analysis of observational studies. J Tehran Heart Cent 2021; 16: 135146.Google ScholarPubMed
Garcia, O, Sandoval Jones, J, Aristizabal Villa, G. Pulmonary reperfusion injury following right ventricular outflow tract stenting. Eur Soc Rad 2017; 2017: B-1379.Google Scholar
Begum, NNF, Bhuiyan, NI, Khan, AA. Stenting of right ventricular out flow tract: analysis of 32 Cases from catheterization laboratory of a paediatric cardiac centre. Bangladesh Heart J 2020; 35: 15.10.3329/bhj.v35i1.49136CrossRefGoogle Scholar
Lee, J, Corl, K, Levy, MM. Fluid therapy and acute respiratory distress syndrome. Crit Care Clin 2021; 37: 867875.10.1016/j.ccc.2021.05.012CrossRefGoogle ScholarPubMed
Coronado-Muñoz, Á., Escalante-Kanashiro, R. Pediatric acute respiratory distress syndrome: how to protect the lungs during mechanical ventilation? Bol Med Hosp Infant Mex 2021; 78: 181190.Google ScholarPubMed
Yamashita, H, Akamine, S, Sumida, Y, et al. Inhaled nitric oxide attenuates apoptosis in ischemia-reperfusion injury of the rabbit lung. Ann Thorac Surg 2004; 78: 292297.10.1016/j.athoracsur.2003.12.025CrossRefGoogle ScholarPubMed
de Perrot, M, Fischer, S, Liu, M, et al. Prostaglandin E1 protects lung transplants from ischemia-reperfusion injury: a shift from pro- to anti-inflammatory cytokines. Transplantation 2001; 72: 15051512.10.1097/00007890-200111150-00006CrossRefGoogle ScholarPubMed
Gillinov, AM, DeValeria, PA, Winkelstein, JA, et al. Complement inhibition with soluble complement receptor type 1 in cardiopulmonary bypass. Ann Thorac Surg 1993; 55: 619624.10.1016/0003-4975(93)90264-ICrossRefGoogle ScholarPubMed
Curtin, ML. Current status of platelet-activating factor antagonists. Expert Opin Ther Pat 1998; 8: 703711.10.1517/13543776.8.6.703CrossRefGoogle Scholar
Dreyer, N, Mühlfeld, C, Fehrenbach, A, et al. Exogenous surfactant application in a rat lung ischemia reperfusion injury model: effects on edema formation and alveolar type II cells. Respir Res 2008; 9: 5.10.1186/1465-9921-9-5CrossRefGoogle Scholar